LATEST UPDATES » Vol 22, No 03, March 2018 – Women in Science - Making a difference       » Brain aging in ASEAN       » Chinese scientists find antidote to centipede venom       » Measuring the risks and rewards of drug development       » Ketone drink could help diabetics by lowering blood sugar       » What value-based healthcare means for Asia       » Improve healthcare access to tackle Asia's healthcare challenge      
Nanomaterial wrap for improved tissue imaging
Inspired by plastic food wrap, researchers investigated the wrapping properties of a fluorine-containing polymer known as CYTOP®, a stiff but stretchable and highly optically transparent material.

Researchers at Tokai University describe in Advanced Materials how wrapping biological tissue in a nanosheet of a particular organic material results in high-quality microscopy images. Application of the wrap prevents the sample from drying out, and hence from shrinking, enabling larger image-recording times.

In order to fully understand how biological cells function, it is important to be able to visualize them in their environment, on long-enough timescales and with high-enough resolution. However, typical setups for studying a biological tissue sample by means of optical microscopy do not prevent the sample from drying out, making it shrink during observation, resulting in blurred images. But now, a team of researchers led by Yosuke Okamura from Tokai University, has discovered how to overcome this problem: wrapping the sample in a fluoropolymer nanosheet preserves its water content, and the sheet’s strong adhesion makes it mountable.

The researchers, who were inspired by the use of plastic food wrap, investigated the wrapping properties of a fluorine-containing polymer known as CYTOP®, a stiff but stretchable and highly optically transparent material. They first confirmed that due to its high water-repellency, a nanosheet of CYTOP® floats on water, even after adding a surfactant. Scanning-electron-microscopy observations revealed that the nanosheet is flat and free of cracks or wrinkles.

As a first test of CYTOP® as a wrapper material for biological tissues, the researchers coated a cylindrically shaped alginate-hydrogel — an easily formable biomaterial — sample in a CYTOP® nanosheet, and monitored the evolution of its water content. They found that after 24 hours, 60% of the original water content was still present. (A similar sample left unwrapped in air became totally dehydrated after about 10 hours.) Through experimenting with various thicknesses, the scientists discovered that the nanosheet’s water-retention capability increases proportionally with its thickness. They concluded that a 133-nm-thick sheet offers sufficient surface adhesion (necessary for fixing the sample) and water retention.

The researchers then performed experiments with an actual biological sample: 1-mm thick brain slices from mice, exhibiting enhanced expression of yellow fluorescent protein for visualisation purposes. Without applying a CYTOP® wrap, evaporation of the embedded water caused local, non-uniform sample shrinkage, leading to a blurred image. By wrapping the brain slices in a CYTOP® nanosheet, however, images with a high spatial resolution could be obtained from scanning a large area (more than 750 µm x 750 µm) over a long time (about 2 hours).

The scientists noted, however, that for observations over longer time spans shrinkage will occur. This effect can be compensated by embedding the sample with agarose, a gel-forming material, providing a stability matrix — a technique already used for mounting biological tissues for microscopy observations. The wrapping technique of Okamura and colleagues is still at an early stage, but, as the researchers point out, it “establishes and verifies the superiority of nanosheet wrapping mounts for tissue imaging”.


Hong Zhang, Ami Masuda, Ryosuke Kawakami, Kenji Yarinome, Riku Saito, Yu Nagase, Tomomi Nemoto & Yosuke Okamura. Fluoropolymer Nanosheet as a Wrapping Mount for High Quality Tissue Imaging Advanced Materials, 21 August, 2017.

Source: Tokai University

Click here for the complete issue.

news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
Asia Pacific Biotech News

Lady Ganga: Nilza'S Story
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2018
Obesity / Outlook for 2018
Searching for the fountain of youth
Women in Science - Making a difference
Digestive health / Intellectual property
Asthma / Dental health
Oncology / Biotech landscape in APAC
Water management / Vaccination
Regenerative medicine / Biotech start ups
Digital healthcare / 3D printing
Bones / Breast cancer
Liver health / Top science research nations & institutions
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy