Debate on Alternative Medicine Heats Up in the US

In 1992, the US Public Health Service, as part of the US Department of Health and Human Services, initiated the Office of Alternative Medicine (OAM). The Congressional mandate establishing the OAM stated that the Office’s purpose is to facilitate the evaluation of alternative medical treatment modalities to determine their effectiveness. The mandate also provides for a public information clearinghouse and a research training program on alternative medicine. The OAM, however, does not function as a referral agency for various alternative medical treatments or for individual practitioners, although it facilitates and conducts research.

Recently, a proposal to elevate the OAM from an office to an institute has fallen short due to the appropriations process. This was more than made up for with a 60% boost in funding, an increase of US$8 million, raising OAM’s current annual budget to US$20 million for fiscal year 1998. The increasing budget allocation attests to the American population’s rising demand for alternative approaches to medical treatments and is a direct result of the general population’s change in perspective that ‘prevention is better than cure,’ since ‘cure’ can be pretty expensive nowadays.

Proponents and Critics in the medical ‘melting’ pot

If the OAM had been successful in acquiring institute status, this would have entitled it to receive a US$200 million annual budget instead of the present US$20 million (refer to Table 1). Even so, lesser budget allocation has not managed to steer the OAM clear of debate concerning how valid its treatments are. Critics comment that alternative medicine should undergo rigorous scientific experimentation, similar to that applied to conventional medicine.

Proponents of alternative medicine claim that mainstream medicine does not give adequate support in this matter, and has started a debate by proposing that the OAM be vested with greater granting authority in terms of budget approval and types of research. According to Mr. James Gordon, the OAM’s first chairperson, “the office has been unable to fully investigate alternative treatments because it has been institutionally shackled.” Basically, this means that the OAM may propose to further research on an alternative treatment, but might find that other more recognized medical bodies disapprove of such research. Ultimately, whether an alternative treatment ‘undergoes rigorous scientific experimentation’ or otherwise, depends on the institutional support it can garner.

Some, like the National Institute of Mental Health (NIMH), have been more cooperative. The NIMH and the OAM are launching a study to investigate St. John’s wort, a herb that is said to contain anti-depressive qualities similar to the drug, Prozac. However, should the National Heart, Lung, and Blood Institute decide after evaluation that it is not important to study chelation therapy, or if the National Cancer Institute disagrees about the value of a new, apparently promising but unconventional cancer treatment, further investigation is ‘vetoed’.

Again, all these has to do with mindset. On one side is the founder of the OAM, Senator Tom Harkin (D-Iowa), whose experience with unconventional therapies had cured his allergies, making him a proponent in the debate. On the other side is the director of the National Institute of Health, Mr. Harold Varmus, who has insisted on lower funds for the OAM in two consecutive years despite an overall increase in funding each year for medical research. Varmus’ rationale, proclaimed to the Stanford Medical School graduates during a commencement speech, was that there should not be two different medical cultures — conventional and alternative — providing public health. He does not seem to see alternative medicine as a viable ‘potion’ to be added into the medical ‘melting’ pot.

“Will the Board Please Rise”

Critics include the dean for research at Baylor College of Medicine, Mr. Robert Rich, who represented the Association of American Medical Colleges (AAMC) at the hearing. A perennial scientist-at-heart, Mr. Rich feels that ‘a skeptical board of reviewers’ as opposed to OAM proponents would be more efficient in applying the same scientific rigor to alternative medicine as to conventional medicine. “As scientists, we need to be disciplining ourselves to base our research on hypotheses, not belief systems,” Mr. Rich contended.

He has perhaps inadvertently ‘missed’ the fact that at the heart of the debate is not just scientific hypotheses, but belief systems also, and that the public’s request for an ‘alternative’ remedy points to the fact that certain former patients of conventional medicine did change their belief systems. So the question is: can conventional medical professionals unfamiliar with alternative
beliefs and the socio-cultural context that produced these methods actually make a rigorous and objective assessment? The solution is probably not any mainstream skeptical scientists nor active alternative medicine proponents but a board comprising of open-minded qualified scientists from both camps.

Mr. Rich has a valid point however. He favors investigation of alternative medicine based on disease category... ‘So that people with the most expertise in a disease can perform the review and granting process, rather than proponents of a particular therapy.’ There is a fear that peer review made up of practitioners from a similar therapy would be more inclined than a board of detached physicians to give the green light for a study, even if the design was flawed. Reportedly, the Bastyr School of Naturopathic Medicine in Seattle spent as much as US$1 million OAM grant on a HIV-related treatment by merely asking subjects what forms of alternative therapies they had used without further investigation if, or how, these therapies worked and without accounting for conventional therapies that subjects might have undergone. The study was reported to have attracted wide criticism.

Scientific Shivers

Whatever the outcome of the debate, it is obvious that after so many years whereby alternative medicine has gained a sizable following, the scientific community is beginning to get the shivers. Estimates have shown that today more than a third of Americans use some form of alternative medicine.

Renowned scientists such as Nobel laureate Paul Berg, a biochemist at the Stanford University Medical Center, wrote in to say that he does not ‘object to investigating supplemental forms of medicine.’ “However, advertising and promoting their medical values without the rigorous clinical trials required by the FDA (Food and Drug Administration) for other drugs and treatments is a great disservice, particularly as it keeps people from seeking the best modern care.” He forgot to mention costly.

Maxine Singer, president of the Carnegie Institution of Washington, DC, is worried because the OAM has ‘bestowed the considerable prestige of the NIH on a variety of highly dubious practices, some of which clearly violate basic laws of physics and more clearly resemble witchcraft than medicine.’ Even Newton once claimed that he was but a boy playing at the seashore with yet an ocean of discovery lying before him. As it is, no one can rightfully claim complete knowledge of what is ‘scientific’. After all, numerous theories, once upon a time tested and accepted by science as fundamental, has been overthrown with further discoveries.

Robert Park, a physicist at the University of Maryland and a vehement alternative medicine opponent, seems to have got the first half of the argument right: He feels that alternative medicine does not lend itself well to conventional research protocol. For example, it is difficult to set up a double-blind study to test the efficacy of acupuncture because ‘people are either being punctured or they are not’. This makes it impossible to tell if improvements seen in subjects are due to the needles or to the placebo effect. Park’s concluding remark that AM have been ‘exempted from real scientific research’ clearly expressed the sentiments of some mainstream medical professionals at the present point of development.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual budget (US$)</td>
<td>2M</td>
<td>3.5M</td>
<td>3.5M</td>
<td>5.4M</td>
<td>5.4M</td>
<td>12M</td>
<td>20M</td>
</tr>
</tbody>
</table>

Table 1 “Where all controversy starts?”

Garlic has Medicinal Uses

Garlic is commonly utilized in Chinese traditional medical practices. The medical properties of garlic can be attributed to a volatile oil found in it, which contains mainly allicin and glycosides. To obtain the maximum beneficial effects from garlic, it should be consumed raw as allicin is heat labile.

Garlic is known to possess anti-toxic properties, aid in digestion and relieve rheumatism and abdominal pains. It is also effective in treating diarrhea and dysentery. Garlic is also recognized for its ability to kill some insect pests that infest stored grains and food products. Garlic also possesses anti-bacterial properties. It has proven to be effective against *Staphylococcus aureus*, *Pneumococcus*, *Bacillus dihourrreae*, *Bacillus typhi*, *Escherichia coli*, *Vibrio cholerae*, and certain species of fungi that infect the skin. It has been reported that consuming garlic during the spring and winter months can help prevent influenza, meningitis and upper respiratory infections. Apparently garlic is also effective in preventing tumors. According to a report, the incidence of gastric cancer appears to be lower in residents of the Cangshan County, Shangdong Province (山東省蒼山縣), where garlic is consumed on a daily basis, compared to other regions where it is not eaten regularly. It has also been reported that garlic can prevent arteriosclerosis, and consuming three heads of garlic daily for four consecutive weeks can lower blood cholesterol level. Experiments indicate that garlic may be an effective immuno-enhancer. Apparently it can enhance the transformation of lymphoblasts and the phagocytic activity of white blood cells, thus increasing the body’s resistance to infections, cancers and radiation-induced damages.