HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Vol 21, No 08, August 2017 – Eye – the Window to your Soul       » Palm-Sized PCR Device for Rapid Real-Time Detection of Viruses       » Scientists Uncover New Mechanism for Diabetic Neuropathy       » China Enlists AI to Diagnose Breast Cancer       » Philips and Singapore Institute of Advanced Medicine Holdings Sign Agreement to Open First-of-its-kind Oncology Center in Singapore       » Guardian Partners with MyDoc to Address Singapore's Population Health Needs through Integrating Technology and Self-Care       » Database Boosts Shanghai's Technology Aim      
EYE ON CHINA
Researchers discover molecular mechanisms of left-right asymmetric control in the sea urchin
Researchers at the Institute of Cellular and Organismic Biology (ICOB) recently uncovered the molecular mechanisms that control the left-right asymmetry that leads to the five-fold radically symmetric body plan in sea urchins. The discovery adds evolutionary depth to the origin of the mechanisms, which were previously found only in vertebrates. The study was published online in PLOS Biology.

The study demonstrates that a protein named bone morphogenic protein (BMP) controls the left-sided development in the sea urchin. On the right-side, a protein called Nodal blocks the BMP signaling and induces cell death. This left-right asymmetric control results in the formation of an adult rudiment on the left side and it later develops into a five-fold symmetric sea urchin.

In bilaterally symmetric animals, the external appearance of their left side represents a mirror image of the right side. However, the internal organs are often left-right asymmetric. Two signals, Nodal and BMP, have been shown to influence the left and right side, respectively, to establish this asymmetry during vertebrate embryogenesis. The study investigated whether the same mechanisms that establish left-right patterning in vertebrates are conserved in invertebrate animals.

Sea urchins are marine invertebrates and have been used for developmental studies for over a century. In recent years, due to the establishment of microinjection techniques and the sequencing of the sea urchin genome, sea urchin has become one of the model organisms for studying developmental gene regulatory networks. Previous studies have shown that right-sided Nodal signaling in sea urchins prevents the formation of the adult rudiment. In this study, Dr. Yi-Hsien Su's group shows that BMP signaling is required for the development of this left-sided structure. The right-sided Nodal signaling and left-sided BMP activity establish left-right asymmetry in the sea urchin. The study is important to understand how a bilateral symmetric embryo transforms into a left-right asymmetric larva. More importantly, the results are foundations for further studies on the developmental origins of the peculiar five-fold symmetric body plan in sea urchins.

Click here for the complete issue.

NEWS CRUNCH  
news Vitafoods Asia 2017: Industry players optimistic of future
news Nestlé Introduces their Singapore R&D Centre
news Vitafoods Asia Elevates 2017 Learning Programme
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Lady Ganga: Nilza'S Story
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2017
January:
Healthcare Focus: LUNGS
February:
War on CANCER
March:
Get to Know TCM
April:
Diabetes: The Big Picture
May:
The Piece of Your Mind - Brain Health/Science
June:
Advocacies in Support of Rare Disease Patients
July:
Food Science & Technology
August:
Eye – the Window to your Soul
September:
Emerging Infectious Diseases
October:
No. 1 Killer — Heart Diseases
November:
Diseases threatening our Children
December:
Skin Diseases/Allergic Reactions
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2017 World Scientific Publishing Co Pte Ltd  •  Privacy Policy