HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, Volume 2, February 2016 Biomedical Research Governance       » Tissue banking in Singapore — An Evolving Enterprise       » China Recognizes Prominent Scientists and Stresses on Innovation       » NUS Researchers Uncover Potent Parasite-killing Mechanism of Nobel Prize-Winning Anti-Malarial Drug       » A New Water Robot "Born" to Detect Water Quality       » Probing the Mystery of How Cancer Cells Die       » Researchers Find Link between Processed Foods and Autoimmune Diseases       » Unravelling the Genetics of Pregnancy and Heart Failure      
BIOBOARD - UNITED STATES
To trap a rainbow, slow down light
A new material that halts and absorbs light may lead to advances in solar energy, stealth technology, and other fields, experts report.

Researchers developed a “hyperbolic metamaterial waveguide” that halts and ultimately absorbs each frequency of light, at slightly different places in a vertical direction, to catch a “rainbow” of wavelengths. The technology is essentially an advanced microchip made of ultra-thin films of metal and semiconductors and/or insulators.

“Electromagnetic absorbers have been studied for many years, especially for military radar systems,” says Qiaoqiang Gan, an assistant professor of electrical engineering at University at Buffalo.

“Right now, researchers are developing compact light absorbers based on optically thick semiconductors or carbon nanotubes. However, it is still challenging to realize the perfect absorber in ultra-thin films with tunable absorption band.

“We are developing ultra-thin films that will slow the light and therefore allow much more efficient absorption, which will address the long existing challenge.”

Light is made of photons that, because they move extremely fast, are difficult to tame. In their initial attempts to slow light, researchers relied upon cryogenic gases, which are very cold—roughly 240 degrees below zero Fahrenheit—and difficult to work with outside a laboratory.

Gan previously helped pioneer a way to slow light without cryogenic gases. He and other researchers at Lehigh University made nanoscale-sized grooves in metallic surfaces at different depths, a process that altered the optical properties of the metal. While the grooves worked, they had limitations. For example, the energy of the incident light cannot be transferred onto the metal surface efficiently, which hampered its use for practical applications.

As reported in the journal Scientific Reports, the waveguide solves that problem because it is a large area of patterned film that can collect the incident light efficiently. It is referred to as an artificial medium with subwavelength features whose frequency surface is hyperboloid, which allows it to capture a wide range of wavelengths in different frequencies, including visible, near-infrared, mid-infrared, terahertz, and microwaves.

Researchers say the technology could lead to advancements in an array of fields.

For example, in electronics there is a phenomenon known as crosstalk, in which a signal transmitted on one circuit or channel creates an undesired effect in another circuit or channel. The on-chip absorber could potentially prevent this.

The on-chip absorber may also be applied to solar panels and other energy-harvesting devices. It could be especially useful in mid-infrared spectral regions as thermal absorber for devices that recycle heat after sundown, Gan says.

Technology such as the stealth bomber involves materials that make planes, ships, and other devices invisible to radar, infrared, sonar, and other detection methods. Because the on-chip absorber has the potential to absorb different wavelengths at a multitude of frequencies, it could be useful as a stealth-coating material.

Source: University at Buffalo/ Futurity

Click here for the complete issue.

NEWS CRUNCH  
news Singapore Researchers Develop World'S First High-Throughput Imaging Platform for Predicting Kidney Toxicity
news Collaboration is Cure for Better Global Health Outcomes, UK-India Experts Say
news EmTech Asia Opens: Features 50 speakers on innovation and emerging technologies
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Primates in Biomedical Research
COLUMNS  
\
APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Cancerology / Oncology
May:
Guest Editorial - Antibody Informatics In Japan
June:
Medical Devices and Technology
July:
Water Technology
August:
Occupational Health
September:
Olympics: Evolution of Sports
October:
Respiratory: Seasonal flu viruses
November:
Tobacco Smoking
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim/td>
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy