HOME ABOUT CONTACT PREVIOUS ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Intelligent Sensor Informs You to Change a Diaper via SMS       » University of Manchester & A*STAR ongoing partnership- Joint PhD programme       » Philippines Healthcare & New Digital Platform, MyDoc.       » Tapping on ASEAN'S Healthcare Opportunities through Singapore       » ASEAN: The New Playing Field for Global Medical Device Companies       » The Burden of Great Potential: the ASEAN Economic Community & Biopharmaceuticals       » When there is no Queen in the house, Asian Hive Bees Avoid Risky Foraging for Reproduction       » XELJANZTM (Tofacitinib Citrate), A new class of treatment for Rheumatoid Arthritis Approved in Singapore      
BIOBOARD - UNITED STATES
Fibrocell/UCLA study on human skin cells yields promising results
Fibrocell Science, Inc announced that its research collaboration with UCLA has resulted in a discovery that may lead to a more predictable, commercially viable method of producing stable, induced pluripotent stem (iPS) cells from adult skin cells. The study has been accepted for publication in the Stem Cell Research and Therapy peer-reviewed journal and the provisional paper is available online. It was conducted under the guidance of James Byrne, PhD, assistant professor, UCLA Department of Molecular and Medical Pharmacology, at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

“We continue to be pleased with the results of our collaboration with UCLA to pursue the full potential of fibroblasts,” said David Pernock, CEO and Board Chair, Fibrocell Science.

The cells may be used by academic researchers and pharmaceutical companies to evaluate new drug compounds for safety and to develop patient-specific therapies for multiple disease states, including heart disease, Parkinson’s disease and diabetes. Using skin cells is more advantageous to the patient than obtaining cells from bone marrow or adipose tissue (fat). A skin biopsy is quicker to perform, less painful and minimally invasive.

Dr. Byrne’s study found human skin cells cultured in the presence of a chemical known as BAY11 resulted in reproducible increased expression of the OCT4 gene that did not inhibit normal cell growth. OCT4 is involved in many cell processes, but is primarily known to maintain pluripotency and regulate cell differentiation. It is typically used as a marker to identify undifferentiated cells.

The development of a more stable method to create iPS cells from skin cells allows for the potential of a reproducible commercial manufacturing process. The study was performed at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Department of Molecular and Medical Pharmacology at UCLA in conjunction with the Department of Cell Biology and Neuroscience at Rutgers University.

Click here for the complete issue.

EDITORS' CHOICE  

Credits to: American Chemical Society
COLUMNS  

APBN Editorial Calendar 2015
Trends and Predictions for 2015 Robotics in Healthcare Nutrition Universal Health Coverage
Start-Up Biotech Companies Preventative and Translational Medicine Biofuels ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development Antibody Engineering in Japan Christmas Edition
APBN Editorial Calendar 2016
Korea's Biotechnology Industry Nutrition and Allergies: Are we, Too Clean? Medical Devices and Technology: Innovation that leaves an Inspiration Tobacco Smoking: The 'Real' Cost of One Cigarette
Life-Saving Opportunities: A Guide to Regenerative Medicine Occupational Health Water Technology Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy