Home
About Us
In this Issue
Previous Issue
Editorial Board
How to Contribute
Advertise with Us
Editorial Calendar
Subcribe Now
Global Healthcare Releases provided by Business Wire

 The Publication & Databases on Biotechnology in the Asia Pacific
 
 More free   feature articles 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BIOBOARD - UNITED STATES
Pain drug may prevent preemie lung damage
Scientists have prevented lung damage in mice by blocking stress pathways with pain drug—a possible treatment for lung disorders in preterm babies.

In the new study, the team located key molecules that switch on stress pathways in preterm lung disorders, and also found that when parts of these pathways were blocked with a pain drug, lung damage was prevented or reversed.

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in premature infants and does not have any specific treatment.

The disorder affects about 97 % of infants with birth weights below 1,250 grams, and can lead to repeated respiratory tract infections, as well as to emphysema and chronic obstructive pulmonary disease in adulthood.

A research team led by Vineet Bhandari, associate professor of pediatric neonatology and obstetrics, gynecology, and reproductive sciences at Yale School of Medicine, theorized that if the molecules that cause these disorders can be blocked early on, they could essentially prevent lifelong lung problems.

Bhandari and his team studied the lung tissue of newborn mice. They noted that when this lung tissue was exposed to hyperoxia—excess oxygen in tissues and organs that activates all components of the stress pathways in the newborn lung—there was a marked increase of cyclooxygenase 2 (Cox2) in the lung’s stress pathways. This action resulted in BPD in mice. Once the team used a drug that inhibits Cox2, they were able to reverse BPD in mice.

“This is the first time hyperoxia has been comprehensively shown to be responsible for activating the stress pathway in developing lungs,” says Bhandari. “Hyperoxia can induce interferon gamma and disrupt lung development, leading to BPD in mice.” The research is published in the American Journal of Respiratory Cell and Molecular Biology.

“Once we used the Cox2 inhibitor Celecoxib, we were able to reverse the effects in the mouse BPD models. The drug, originally indicated to treat pain, protected the lungs from cell death, and was able to prevent destruction of and damage to the developing lung exposed to hyperoxia or excess interferon gamma in room air,” Bhandari explains.

Bandari added that the findings suggest that Cox2 and or CHOP—a molecule important in the stress pathway—are potential new drug targets that can be inhibited to treat or prevent human BPD. The next step is to conduct pre-clinical studies.

Click here for the complete issue.


About Us | How to Contribute | How to Advertise With Us | Contact Us |

"The views expressed here does not necessarily reflect the views of Asia Pacific Biotech News or its staff."
Copyright © 2014 World Scientific Publishing Co. All rights reserved.