LATEST UPDATES » Big Data, Bigger Disease Management and Current preparations to manage the Future Health of Singaporeans       » Big Data in Clinical Research Sector       » Professor Yuk-ling Yung receives Gerard P. Kuiper Prize       » AXA Assistance on Regenerative Medicine       » Singtel – Singapore Cancer Society Race against Cancer 2015       » Jardiance® is the only diabetes medication to show a significant reduction in both cardiovascular risk and cardiovascular death      
Whole genome sequencing of wild rice reveals the mechanisms underlying Oryza genome evolution
In a collaborative study published in Nature Communications, researchers from Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BGI-Shenzhen, and University of Arizona have completed the genome sequencing of wild rice Oryza brachyantha. This work provides new insights for researchers to understand the function and evolution of Oryza genomes.

The genus Oryza is an idea model system for studying plant comparative genomics, evolutionary biology and functional biology. There are two cultivated rice and more than twenty wild rice species. Among them, the wild relatives can provide invaluable genomic resources for rice improvement. As the most diverged wild relative of O. sativa (rice), O. Brachyantha has resistance against many rice pathogens and various stress environments. It was also proved to have the most compact genome in the genus Oryza, suggesting the genome may not experience many changes after the divergence of Oryza species.

In this study, researchers generated a high-quality reference genome sequence of O. brachyantha (~261Mb), and 96% genome sequences are anchored on 12 chromosomes based upon BAC-based physical map. After the comprehensive analysis, they found that the compact genome of O. brachyantha was caused by the silencing of LTR (Long terminal Repeats) retrotransposons and massive internal deletions of ancient elements.

Compared with the rice genome, the team found that many gene families were expanded in rice, where tandem duplications and gene movements mediated by double-strand break repair are responsible for the amplification of these genes. Researchers also observed that segmental and tandem duplications, further expanded by transposable element insertions, contributed to transition from euchromatin to heterochromatin in the rice genome, reflecting the dynamic nature of the Oryza genomes.

Quanfei Huang, Project Manager from BGI, said “This work revealed many important genomic mechanisms underlying Oryza genome, such as the genome size variation, gene movement and transition of euchromatin to heterochromatin. In the near future, I believe there will be more genomes of Oryza species to be cracked, enabling the genus Oryza be an unparalleled system for functional and evolutionary studies in plants.”

Click here for the complete issue.

news Runners' High, Happy Feet — If you're Happy, and you know it 'Clap' your Feet
news Snapshot of Stem Cell Expression using Single-cell RNA Sequencing
news A Heroic Voyage — Sydney Brenner's Life in Science
news VeloX, A Minimally Invasive Prosthetic Heart Valve for treating Mitral Regurgitation
news Anti-CD25 monoclonal antibody (90Y-daclizumab) a favorable target towards systemic radio-immunotherapy in Hodgkin's Lymphoma

Credits to Sony Computer Entertainment and click here for behind the scenes.

APBN Editorial Calendar 2015
Trends and Predictions for 2015 Robotics in Healthcare Nutrition Universal Health Coverage
Start-Up Biotech Companies Preventative and Translational Medicine Biofuels ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development Antibody Engineering in Japan Christmas Edition
APBN Editorial Calendar 2016
Korea's Biotechnology Industry Nutrition and Allergies: Are we, Too Clean? Medical Devices and Technology: Innovation that leaves an Inspiration Tobacco Smoking: The 'Real' Cost of One Cigarette
Life-Saving Opportunities: A Guide to Regenerative Medicine Occupational Health Water Technology Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy