HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Vol 20, No 12, December 2016 – Medical Imaging Technology       » Climate Change Could Hurt Coffee, Help Banana Production       » Partnerships and Innovation: Shaping the Future of Healthcare in Asia Pacific       » Chugai's Novel Antibody Technologies Put Singapore at the Centre of Fight Against Disease       » NUS Scientists Discover the "Switch" that Makes Breast Cancer Cells Aggressive      
EYE in CHINA
A new approach for the reduction of carbon dioxide to methane and acetic acid
Bioelectrochemical systems (BESs) are considered to be a new device capable of converting the chemical energy of organic waste into electricity or hydrogen/chemical products, which have been applied in many fields including the biological recovery of heavy metal, reduction of nitrate and dechlorination of halogenated hydrocarbons. Recently, a fresh viewpoint that carbon dioxide can be fixed and transformed to produce multicarbon organic chemicals and fuels in BESs was put forward, which has attracted more interest of the scientists in this area.

Prof. Li Daping's team from Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, has been engaged in the study of the BESs for carbon dioxide fixation for two years. Recently, they found carbon dioxide could be reduced to methane and acetic acid via direct and/or indirect extracellular electron transfer when methanogenesis and acetogenic bacteria were used as electroactive microorganisms attached on the cathode with carbon dioxide as the solar carbon source in BESs.

However, the metabolic pathway and end products were highly dependent on the cathodic potential, but only methane and hydrogen were produced when the cathodic potential was set in the range from -850 to -950 mV (vs. Ag/AgCl). Also, with the potential more negative than -950 mV, methane, hydrogen and acetic acid were simultaneously produced, and more methane (129.32 mL d-1) and more acetic acid (94.73 mg d-1) were obtained with a relatively large cathode surface area of 49 cm-2 at the cathodic potential of -1150 mV.

 This research has suggested that mixed culture has the ability to accept electrons directly from the electrode or hydrogen to convert carbon dioxide to organic compounds, which can reduce carbon dioxide emissions and gain value-added substances simultaneously.

Click here for the complete issue.

NEWS CRUNCH  
news Accuron Technologies' MedTech Division Invests into AWAK Technologies
news Philips introduces PerformanceBridge suite of operational performance improvement software and services for radiology departments
news Give a Gift that Will Last a Lifetime this Holiday Season with Smile Train
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Lady Ganga: Nilza'S Story
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2017
January:
Lungs & Respiratory System
February:
Cancer Research, Treatment/Technology
March:
Traditional Chinese Medicines
April:
Eye Care/ Eye Health
May:
The Piece of Your Mind - Brain Health/Science
June:
Featuring Biotech Start-Ups/Companies
July:
Food Science & Technology
August:
Diabetics Technology
September:
No. 1 Killer - Heart Diseases, Diagnosis and Treatment
October:
Skin Diseases/Allergic Reactions
November:
Diseases threatening our Children
December:
Liver Health & Treatment/Technology
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2016 World Scientific Publishing Co Pte Ltd  •  Privacy Policy