LATEST UPDATES » Big Data, Bigger Disease Management and Current preparations to manage the Future Health of Singaporeans       » Big Data in Clinical Research Sector       » Professor Yuk-ling Yung receives Gerard P. Kuiper Prize       » AXA Assistance on Regenerative Medicine       » Singtel – Singapore Cancer Society Race against Cancer 2015       » Jardiance® is the only diabetes medication to show a significant reduction in both cardiovascular risk and cardiovascular death      
A new approach for the reduction of carbon dioxide to methane and acetic acid
Bioelectrochemical systems (BESs) are considered to be a new device capable of converting the chemical energy of organic waste into electricity or hydrogen/chemical products, which have been applied in many fields including the biological recovery of heavy metal, reduction of nitrate and dechlorination of halogenated hydrocarbons. Recently, a fresh viewpoint that carbon dioxide can be fixed and transformed to produce multicarbon organic chemicals and fuels in BESs was put forward, which has attracted more interest of the scientists in this area.

Prof. Li Daping's team from Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, has been engaged in the study of the BESs for carbon dioxide fixation for two years. Recently, they found carbon dioxide could be reduced to methane and acetic acid via direct and/or indirect extracellular electron transfer when methanogenesis and acetogenic bacteria were used as electroactive microorganisms attached on the cathode with carbon dioxide as the solar carbon source in BESs.

However, the metabolic pathway and end products were highly dependent on the cathodic potential, but only methane and hydrogen were produced when the cathodic potential was set in the range from -850 to -950 mV (vs. Ag/AgCl). Also, with the potential more negative than -950 mV, methane, hydrogen and acetic acid were simultaneously produced, and more methane (129.32 mL d-1) and more acetic acid (94.73 mg d-1) were obtained with a relatively large cathode surface area of 49 cm-2 at the cathodic potential of -1150 mV.

 This research has suggested that mixed culture has the ability to accept electrons directly from the electrode or hydrogen to convert carbon dioxide to organic compounds, which can reduce carbon dioxide emissions and gain value-added substances simultaneously.

Click here for the complete issue.

news A Heroic Voyage — Sydney Brenner's Life in Science
news VeloX, A Minimally Invasive Prosthetic Heart Valve for treating Mitral Regurgitation
news Anti-CD25 monoclonal antibody (90Y-daclizumab) a favorable target towards systemic radio-immunotherapy in Hodgkin's Lymphoma

Credits to Sony Computer Entertainment and click here for behind the scenes.

APBN Editorial Calendar 2015
Trends and Predictions for 2015 Robotics in Healthcare Nutrition Universal Health Coverage
Start-Up Biotech Companies Preventative and Translational Medicine Biofuels ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development Antibody Engineering in Japan Christmas Edition
APBN Editorial Calendar 2016
Korea's Biotechnology Industry Nutrition and Allergies: Are we, Too Clean? Medical Devices and Technology: Innovation that leaves an Inspiration Tobacco Smoking: The 'Real' Cost of One Cigarette
Life-Saving Opportunities: A Guide to Regenerative Medicine Occupational Health Water Technology Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy