Home
About Us
In this Issue
Previous Issue
Editorial Board
How to Contribute
Advertise with Us
Editorial Calendar
Subcribe Now
Global Healthcare Releases provided by Business Wire

 The Publication & Databases on Biotechnology in the Asia Pacific
 
 More free   feature articles 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BIOBOARD - MIDDLE EAST
Off-grid solar sterilizers could aid remote areas
A solar-powered sterilizer could provide remote areas in the developing world with a portable, off-grid solution for sanitizing medical instruments and equipment, according to a study.

In remote, resource-poor locations, the lack of readily available sterilization processes for medical or dental tools increases the risk of disease propagation.

Now, researchers from Rice University in the United States have developed two prototype sterilization devices that harness the sun's power: one to sanitize medical equipment and the other to sterilize human waste without the need for an external electricity source. Their work was published in Proceedings of the National Academy of Science.

Both devices are modified versions of the steam-based autoclave systems used in modern medical facilities to eradicate infectious microorganisms from surfaces and liquids with a blast of high-pressure steam.

"Although steam-based sterilization is the primary method of choice for the processing of medical waste in the developed world, the large energy requirement for operation is the fundamental limitation for its adoption in developing countries, with limited or nonexistent access to sources of electricity sufficient to power such systems," the study says.

The new devices consist of a vessel containing water and gold nanoparticles that is placed in sunshine collected using a solar dish. The nanoparticles absorb the sunlight and this heat produces steam.

The process does not damage the nanoparticles, so they can be reused.

The systems maintain temperatures between 115 and 132 degrees Celsius for the time period sufficient to sterilize the contents of a 14.2 liter volume, which is in accordance with US Food and Drug Administration sterilization guidelines.

Both devices passed the standard test of killing a reference strain of the heat-resistant bacteria Geobacillus stearothermophilus — used to check the performance of standard steam-based autoclave systems — in a sample over 30 minutes.

The researchers say their prototypes could be altered to provide steam for direct use in water purification, cooking, or electricity generation. However, they declined to comment on whether the devices have been field-tested, who will produce them and how they will be made available to developing countries.

Lead researcher Naomi Halas, professor of biomedical engineering at the university, tells SciDev.Net: "We would prefer not to answer questions regarding our technology. Any information not disclosed in our paper is not for public knowledge at the present time."

Tony Collins, managing director of UK-based autoclave manufacturer Priorclave, says that the devices could have a significant impact in developing countries, but also suggests a modification.

"Some consideration should be given to a method of ensuring the items to be sterilized stay at or above the required temperature for the required time without having to watch the process," he says.

Hilmi Salem, a research professor and director-general of the Applied Sciences and Engineering Research Centres at Palestine Technical University, says that the use of gold nanoparticles raises questions about cost and whether the devices will be affordable to poor communities.

"It remains to be seen whether the apparatus and technical support will be available to them under manageable and suitable terms," Salem adds.

Source: Science Development Network

Click here for the complete issue.


About Us | How to Contribute | How to Advertise With Us | Contact Us |

"The views expressed here does not necessarily reflect the views of Asia Pacific Biotech News or its staff."
Copyright © 2014 World Scientific Publishing Co. All rights reserved.