HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Vol 21, No 08, August 2017 – Eye – the Window to your Soul       » Palm-Sized PCR Device for Rapid Real-Time Detection of Viruses       » Scientists Uncover New Mechanism for Diabetic Neuropathy       » China Enlists AI to Diagnose Breast Cancer       » Philips and Singapore Institute of Advanced Medicine Holdings Sign Agreement to Open First-of-its-kind Oncology Center in Singapore       » Guardian Partners with MyDoc to Address Singapore's Population Health Needs through Integrating Technology and Self-Care       » Database Boosts Shanghai's Technology Aim      
BIOBOARD - JAPAN
Waseda University team sheds light on self-organization of biological structures

Researchers at Waseda University in Japan have identified key information to help explain the formation of the “spindle apparatus”, a structure required for cell division. Their findings shed light on the mechanisms behind “self-organization” – an essential characteristic of biological structures.

Organisms are composed of a variety of structures including muscles, internal organs, and brains, all of which are created through a process known as self-organization. In a study published in the online journal, Cell Reports, the research team examined how the spindle apparatus self-organizes. Composed of fibrous molecules called microtubules, this structure is responsible for the segregation of chromosomes between daughter cells.

Researchers around the world are interested in the mechanisms of spindle formation because if chromosome segregation does not take place correctly in human cells, the process can cause cancer or birth defects. Previous studies have identified molecular motors and a range of other molecules involved in spindle formation. But certain fundamental data remain missing, particularly concerning the relationship between the amount of microtubules and the size and shape of spindles.

Using fluorescence microscopy, Jun Takagi and his colleagues at Waseda University observed self-organizing spindles from the eggs of aquatic frogs. Based on their observations, the team derived a simple mathematical model describing the relationship between the size and shape of the spindle apparatus and the density and amount of microtubules. This successful characterization of the key parameters that determine spindle structures during self-organization is particularly useful in understanding the physical mechanisms of ‘self-organization’ in orderly structures.

Source: Waseda

Click here for the complete issue.

NEWS CRUNCH  
news Vitafoods Asia 2017: Industry players optimistic of future
news Nestlé Introduces their Singapore R&D Centre
news Vitafoods Asia Elevates 2017 Learning Programme
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Lady Ganga: Nilza'S Story
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2017
January:
Healthcare Focus: LUNGS
February:
War on CANCER
March:
Get to Know TCM
April:
Diabetes: The Big Picture
May:
The Piece of Your Mind - Brain Health/Science
June:
Advocacies in Support of Rare Disease Patients
July:
Food Science & Technology
August:
Eye – the Window to your Soul
September:
Emerging Infectious Diseases
October:
No. 1 Killer — Heart Diseases
November:
Diseases threatening our Children
December:
Skin Diseases/Allergic Reactions
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2017 World Scientific Publishing Co Pte Ltd  •  Privacy Policy