HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, Volume 2, February 2016 Biomedical Research Governance       » Tissue banking in Singapore — An Evolving Enterprise       » China Recognizes Prominent Scientists and Stresses on Innovation       » NUS Researchers Uncover Potent Parasite-killing Mechanism of Nobel Prize-Winning Anti-Malarial Drug       » A New Water Robot "Born" to Detect Water Quality       » Probing the Mystery of How Cancer Cells Die       » Researchers Find Link between Processed Foods and Autoimmune Diseases       » Unravelling the Genetics of Pregnancy and Heart Failure      
BIOBOARD - UNITED STATES
Team uncovers HIV's secret survival trick
HIV, the virus that causes AIDS, has an alternate way to replicate, researchers have discovered.

“Although this is not the virus’ main method for replicating, having this option available can help HIV survive,” says David N. Levy, an associate professor of science and craniofacial biology at the New York University College of Dentistry.

“These new findings suggest one mechanism by which HIV may be surviving in the face of antiviral drugs, and suggests new avenues for research into eliminating infection,” adds Levy, who led the research published in the Journal of Virology.

For decades, scientists have been confident that HIV-1, the virus that causes AIDS, must insert its genetic material into a cell's DNA in order to reproduce. This process, called “integration,” makes the virus a permanent part of the cell.

Some of these infected cells can remain as long as the person is alive, and this is one reason why HIV-positive individuals must remain on anti-HIV drugs for life.

HIV-1 can sometimes skip this integration step entirely, the researchers discovered.

The integration step is highly inefficient and actually fails up to 99 percent of the time, leaving most viruses stranded outside of the safe harbor of cell's DNA. The assumption was that these stranded, or “unintegrated”, viruses were unable to reproduce, but Levy's team has found that if the conditions are right, they can generate new viruses that infect new cells.

The unintegrated viruses can survive for many weeks in cells, allowing HIV to “hide out” in a dormant state. The ability of HIV-1 to go dormant helps it avoid elimination by antiviral drugs and immune responses.

“There is intense interest by researchers in the idea that new drugs might be developed to help to completely eliminate the virus from infected individuals,” says Levy. “We think that the new replication mechanism we have found could provide a target for drugs designed to eliminate infection.”

The National Institutes of Health supported the work.

Source: New York University

Click here for the complete issue.

NEWS CRUNCH  
news Singapore Researchers Develop World'S First High-Throughput Imaging Platform for Predicting Kidney Toxicity
news Collaboration is Cure for Better Global Health Outcomes, UK-India Experts Say
news EmTech Asia Opens: Features 50 speakers on innovation and emerging technologies
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Primates in Biomedical Research
COLUMNS  
\
APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Cancerology / Oncology
May:
Guest Editorial - Antibody Informatics In Japan
June:
Medical Devices and Technology
July:
Water Technology
August:
Occupational Health
September:
Olympics: Evolution of Sports
October:
Respiratory: Seasonal flu viruses
November:
Tobacco Smoking
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim/td>
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy