HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, No. 8, August 2016 – Novel Technologies for Antibody Drug Discovery in Japan       » Global Experts Convene to Discuss China's Plan for Diabetes Prevention and Rehabilitation in 2016       » Butterflies Offer Climate Scientists Ecological Insights       » Thermal Stability of Camelid Single Domain VHH Antibody       » That Gut Feeling: How A Healthy Digestive System Has Everything To Do With It       » World Heart Day - At the Heart of Health      
BIOBOARD - UNITED STATES
TB genomes yield insights on drug resistance
Research on the huge genetic diversity of tuberculosis bacteria and the complex genetics behind growing worldwide resistance to TB drugs could pave the way for improved diagnostic tools to tackle this problem, say researchers.

Three independent studies of the TB genome, published in Nature Genetics, provide insights into how genetic changes, or mutations, confer drug resistance on Mycobacterium tuberculosis. A fourth study looks at how the bacterium accompanied ancient human migration out of Africa and multiplied with increases in human population densities.

A study by Maha R. Farhat, a researcher at Harvard Medical School, United States, and colleagues, analysed the genomes of 123 TB strains from around the world that represent the major genetic and drug-resistant groups.

They identified new mutations and biochemical pathways that are linked to drug resistance and could be key 'markers' for identifying resistance cases in hours, compared with the days or weeks taken by culture tests that involve growing TB from patient samples.

"We hope that these mutations can be used to expand the currently used diagnostic tools that are based on mutation detection," Farhat says.

"We also hope that these mutations can expand our understanding of how drug resistance develops, paving the way to better ways of treating drug-resistant TB and even preventing drug resistance from developing."

A team co-led by researcher Lijun Bi of the Institute of Biophysics at the Chinese Academy of Sciences, in Beijing, sequenced the genetic material of 161 TB strains from China, and identified new genetic regions linked to drug resistance.

"Our work indicates that the genetic basis of drug resistance is more complex than previously anticipated and provides a strong foundation for elucidating unknown drug resistance mechanisms," the study says.

China faces a "particularly acute" problem of TB drug resistance as 5.7 per cent of new cases of the disease are multidrug resistant (MDR) because patients do not respond to the two primary TB drugs isoniazid and rifampicin. Furthermore, eight per cent of MDR cases become extensively drug-resistant, where patients also do not respond to other drugs used to treat MDR cases.

A third study, by a team led by David Alland, a researcher from New Jersey Medical School, Rutgers University, United States, shows that the emergence of resistance to one of the first-line TB drugs, ethambutol, is a multistep process, involving changes in and interactions between several genes, which result in a range of resistance levels.

"As these mutant strains [with low-level resistance] accumulate, they would constitute a pool from which fully drug-resistant strains could preferentially emerge," their report says.

It concludes that current diagnostic tools are inadequate to detect low-level drug resistance, and that diagnostic tests should screen mutations for both low- and high-level resistance.

A fourth study, by I帽aki Comas, a researcher at the Centre for Public Health Research in Valencia, Spain, and colleagues, which analysed genomes of 259 strains of tuberculosis, shows how the TB bacterium emerged about 70,000 years ago in Africa, and accompanied human migration out of the continent. It evolved in parallel with its human hosts and expanded each time human population density rose.

"We think we are closer to identifying those genetic changes that have allowed the bacteria to adapt to different human populations and that these changes will give us a clue about the modulation of virulence of the bacteria," Comas says.

"We want to continue working on the application of next-generation sequencing for [use in] improving diagnosis, treatment and public health approaches to tackling tuberculosis," he adds.

Madhukar Pai, an associate director at McGill International TB Centre in Canada, says the results of the studies on drug resistance have two important applications.

"As new diagnostics are being developed for the future, it is most helpful for product developers to know which mutations are critical for identifying resistance to various drugs," he says.

Also, "as new TB drugs are being developed, it is helpful to understand when and how resistance can emerge to the newer drugs, so that we can help reduce the risk of losing new drugs quickly".

Source: Science Development Network

Click here for the complete issue.

NEWS CRUNCH  
news World Population Day 2016
news NUS Student Clinches Top Prize at National Smart Mapping Competition with Cutting-Edge Food Security Solution
news Gather China & World Pharmaceutical Entrepreneurs, Create a New Chapter of Chinese Pharma Industry
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Healthcare Technology Outlook 2020 - Technology uptake
COLUMNS  

APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Leading-Edge ONCOLOGY
May:
Healthcare Systems & Policies in Asia
June:
Medical Devices & Healthcare Technology
July:
Water Technology and Management
August:
Novel Technologies for Antibody Drug Discovery in Japan
September:
Infectious Diseases
October:
Medical Tourism
November:
Biomedical Imaging Technology
December:
Food Technology
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com or Mr Edward
Copyright© 2016 World Scientific Publishing Co Pte Ltd  •  Privacy Policy