HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 22, No 04, April 2018 – Digestive health in the 21st century - Trust your guts       » Food wasted in China could feed 30-50 million       » Chinese scientists analyze human brain's "CPU"       » $150,000 fundraiser launched to sequence South Asian genomes       » Green tea-based drug carriers improve cancer treatment       » Scientists grow liver cancer cells in lab      
BIOBOARD - SINGAPORE
A*STAR Researchers Create Novel Assay to Test for Epigenetic Abnormalities in Pre-implanted Mice Embryos

Scientists from A*STAR’s Institute of Medical Biology (IMB) and Institute of Molecular and Cell Biology (IMCB) have created a novel assay to probe the DNA methylation state of multiple genomic loci in single cells.

An embryo’s normal development requires certain epigenetic changes to take place during early development; one type of epigenetic change is called ‘DNA methylation’. This is a crucial process for an embryo’s early development because it selectively ‘switches off’ certain genes – helping its cells grow into different cell types.

Errors in this epigenetic process, such as ‘switching off’ the wrong genes, are known causes of early developmental diseases and cell death. Two of which are Beckwith-Wiedemann and Silver-Russell syndromes. Both syndromes are extreme examples of epigenetic diseases — Beckwith-Wiedemann syndrome causes rapid overgrowth in infants while Silver-Russell syndrome causes slow growth resulting in delayed development and learning disabilities in children.

An important first-step to address the debilitating effects of epigenetic diseases is to find a way to identify embryos with ‘troubled’ methylation states. The single cell methylation assay developed by the researchers from IMB and IMCB can be used to safely extract one cell for testing in an embryo fertilised in vitro. Previous similar assays required large numbers of cells for testing, which would destroy the embryo. The benefit of extracting one cell per assay is that the remaining cells of the embryo can be left to mature normally.

Unique Microfluidic Technique Secret to Discovery

Working hand-in-hand, scientists from IMB and IMCB were able to use a special technique using a microfluidic device to perform the assay with the small amounts of DNA present in a single cell. Microfluidics is the process of handling minute volumes of liquid. The Microfluidics Systems Biology Lab at IMCB includes an interdisciplinary team of engineers and biologists. According to Dr. William F. Burkholder, who co-directs the lab said, "It is having engineers and biologists working together and learning from each other that facilitates the development of cutting-edge tools for biomedical research."

Potential Screening and Treatment

The scientists also made another important discovery — they were able to return normal epigenetic functions back to a pre-implanted embryo suffering from improper epigenetic development. Researchers used a technique called ‘pronuclear transfer’ that takes the genome from a defective embryo and inserts it into a healthy embryo. Even though this technique had been performed successfully before, this is the first time scientists have shown an embryo with defective maternal epigenetic regulation can be rescued using the technique.

The success of pronuclear transfer and the single cell assay raises the possibility that therapeutic treatments in the field of Assisted Reproductive Technology (ART) can be developed to correct maternally-inherited epigenetic disease syndromes. The lead researcher on this study, Dr. Daniel M. Messerschmidt said, “It becomes increasingly evident that epigenetic defects which predominantly develop at the very early stages of pregnancy cause infertility, abortion or complex syndromes. Studies like ours, in which new powerful methods are developed to uncover the detailed molecular principles involved, create the basis for future clinical research, and eventually, clinical applications”.

Click here for the complete issue.

NEWS CRUNCH  
news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2018
January:
Obesity / Outlook for 2018
February:
Searching for the fountain of youth
March:
Women in Science - Making a difference
April:
Digestive health in the 21st century - Trust your guts
May:
Asthma / Dental health
June:
Oncology / Biotech landscape in APAC
July:
Water management / Vaccination
August:
Regenerative medicine / Biotech start ups
September:
Digital healthcare / 3D printing
October:
Bones / Breast cancer
November:
Liver health / Top science research nations & institutions
December:
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy