HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, Volume 2, February 2016 Biomedical Research Governance       » Tissue banking in Singapore — An Evolving Enterprise       » China Recognizes Prominent Scientists and Stresses on Innovation       » NUS Researchers Uncover Potent Parasite-killing Mechanism of Nobel Prize-Winning Anti-Malarial Drug       » A New Water Robot "Born" to Detect Water Quality       » Probing the Mystery of How Cancer Cells Die       » Researchers Find Link between Processed Foods and Autoimmune Diseases       » Unravelling the Genetics of Pregnancy and Heart Failure      
BIOBOARD - SINGAPORE
Study led by NUS scientists provides new insights into cause of human neurodegenerative disease

A recent study led by scientists from the National University of Singapore (NUS) opens a possible new route for treatment of Spinal Muscular Atrophy (SMA), a devastating disease that is the most common genetic cause of infant death and also affects young adults. As there is currently no known cure for SMA, the new discovery gives a strong boost to the fight against SMA.

SMA is caused by deficiencies in the Survival Motor Neuron (SMN) gene. This gene controls the activity of various target genes. It has long been speculated that deregulation of some of these targets contributes to SMA, yet their identity remained unknown.

Using global genome analysis, the research team, led by Associate Professor Christoph Winkler of the Department of Biological Sciences at the NUS Faculty of Science and Dr Kelvin See, a former A*STAR graduate scholar in NUS, currently a Research Fellow at the Genome Institute of Singapore (GIS), found that deficiency in the SMN gene impairs the function of the Neurexin2 gene. This in turn limits the neurotransmitter release required for the normal function of nerve cells. The degeneration of motor neurons in the spinal cord causes SMA. This is the first time that scientists establish an association between Neurexin2 and SMA.

Preliminary experimental data also showed that a restoration of Neurexin2 activity can partially recover neuron function in SMN deficient zebrafish. This indicates a possible new direction for therapy of neurodegeneration.

Collaborating with Assoc Prof Winkler and the NUS researchers are Dr S. Mathavan and his team at GIS, as well as researchers from the University of Wuerzburg in Germany.

Small zebrafish provides insights into human neurodegenerative disease

SMA is a genetic disease that attacks a distinct type of nerve cells called motor neurons in the spinal cord. The disease has been found to be caused by a defect in the SMN gene, a widely used gene that is responsible for normal motor functions in the body.

To study how defects in SMN cause neuron degeneration, the scientists utilized a zebrafish model, as the small fish has a relatively simple nervous system that allows detailed imaging of neuron behavior.

In laboratory experiments, the researchers showed when SMN activity in zebrafish was reduced to levels found in human SMA patients, Neurexin2 function was impaired. This novel disease mechanism was also discovered in other in vivo models, suggesting that it is applicable to mammals and possibly human patients.

When the scientists measured the activity of nerve cells in zebrafish using laser imaging, they found that nerve cells deficient for Neurexin2 or SMN could not be activated to the same level as healthy nerve cells. This impairment consequently led to the reduction of muscular activity. Interestingly, preliminary data showed that a restoration of Neurexin2 activity can partially recover neuron function in SMN deficient zebrafish.

Further studies

Assoc Prof Winkler, who is also with the NUS Centre for Biolmaging Sciences, explained, "These findings significantly advance our understanding of how the loss of SMN leads to neurodegeneration. A better understanding of these mechanisms will lead to novel therapeutic strategies that could aim at restoring and maintaining functions in deficient nerve cells of SMA patients."

Dr See added, "Our study provides a link between SMN deficiency and its effects on a critical gene important for neuronal function. It would be interesting to perform follow up studies in clinical samples to further investigate the role of Neurexin2 in SMA pathophysiology."

Moving forward, the team of scientists will conduct further research to determine if Neurexin2 is an exclusive mediator of SMN induced defects and hence can be used as a target for future drug designs. They hope their findings will contribute towards treatment of neurodegeneration.

Click here for the complete issue.

NEWS CRUNCH  
news Singapore Researchers Develop World'S First High-Throughput Imaging Platform for Predicting Kidney Toxicity
news Collaboration is Cure for Better Global Health Outcomes, UK-India Experts Say
news EmTech Asia Opens: Features 50 speakers on innovation and emerging technologies
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Primates in Biomedical Research
COLUMNS  
\
APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Cancerology / Oncology
May:
Guest Editorial - Antibody Informatics In Japan
June:
Medical Devices and Technology
July:
Water Technology
August:
Occupational Health
September:
Olympics: Evolution of Sports
October:
Respiratory: Seasonal flu viruses
November:
Tobacco Smoking
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim/td>
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy