LATEST UPDATES » Big Data, Bigger Disease Management and Current preparations to manage the Future Health of Singaporeans       » Big Data in Clinical Research Sector       » Professor Yuk-ling Yung receives Gerard P. Kuiper Prize       » AXA Assistance on Regenerative Medicine       » Singtel – Singapore Cancer Society Race against Cancer 2015       » Jardiance® is the only diabetes medication to show a significant reduction in both cardiovascular risk and cardiovascular death      
New discovery on how skin cells form "bridges" paves the way for advances in wound healing and tissue engineering

A team of researchers from the National University of Singapore (NUS) have discovered that outer skin cells are able to unite to form suspended "bridges" during wound healing. The new findings will pave the way for tissue engineering, such as the design of artificial skin, and better wound treatment.

Led by Professor Lim Chwee Teck from the Mechanobiology Institute (MBI) at NUS and Departments of Biomedical Engineering and Mechanical Engineering at the NUS Faculty of Engineering, and Professor Benoit Ladoux from MBI and Institut Jacques Monod, the scientists discovered how skin cells can migrate over regions devoid of support from the extracellular matrix, which are structural proteins that allow cells to adhere to.

How human outer skin cells form suspended multicellular "bridges"

Using microfabricated technology, the team found that layers of human outer skin cells, known as keratinocytes, are able to form suspended multicellular "bridges" over regions devoid of extracellular matrix support. Migrating keratinocytes are able to move forward as a united and homogenous collection of cells to form a protective barrier over a wounded area. Eventually, these cells come together to form suspended "bridges" over regions which are not conducive for cell adhesion. It was previously not understood how this healing process, known as "re-epithelialization", could occur over a wound bed that did not provide a homogeneous coating of extracellular matrix for cells to migrate on.

The researchers also found out that the suspended cell sheet is created through the build-up of large-scale tension activated by acto-myosin, a kind of motor protein that can cause contraction in cells. They found the cell sheet to be elastic-like in behavior, which partly explained its ability to form multicellular bridges. This is not seen in other cell types which tend to be more fluid-like.

Next steps in tissue mechanobiology research

Commenting on their study, Prof Lim said, "We need to conduct an in-depth study of the various factors regulating wound healing so that we can better understand the process of tissue repair and regeneration. Our study will hopefully pave the way for designing better alternatives that can overcome the current limitations in the field of skin tissue engineering and promote satisfactory skin regeneration. Some potential applications include treating skin burn wounds as well as characterizing the mechanical properties of cell sheets."

Moving forward, the team will continue to push the boundary of tissue mechanobiology research by investigating the physical and mechanical properties of skin cells. This research will enable scientists to have a better understanding of the changes associated with certain skin diseases such as blistering diseases and those that occur during the course of ageing.

Click here for the complete issue.

news Runners' High, Happy Feet — If you're Happy, and you know it 'Clap' your Feet
news Snapshot of Stem Cell Expression using Single-cell RNA Sequencing
news A Heroic Voyage — Sydney Brenner's Life in Science
news VeloX, A Minimally Invasive Prosthetic Heart Valve for treating Mitral Regurgitation
news Anti-CD25 monoclonal antibody (90Y-daclizumab) a favorable target towards systemic radio-immunotherapy in Hodgkin's Lymphoma

Credits to Sony Computer Entertainment and click here for behind the scenes.

APBN Editorial Calendar 2015
Trends and Predictions for 2015 Robotics in Healthcare Nutrition Universal Health Coverage
Start-Up Biotech Companies Preventative and Translational Medicine Biofuels ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development Antibody Engineering in Japan Christmas Edition
APBN Editorial Calendar 2016
Korea's Biotechnology Industry Nutrition and Allergies: Are we, Too Clean? Medical Devices and Technology: Innovation that leaves an Inspiration Tobacco Smoking: The 'Real' Cost of One Cigarette
Life-Saving Opportunities: A Guide to Regenerative Medicine Occupational Health Water Technology Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy