HOME ABOUT CONTACT PREVIOUS ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Molecular Marvel       » Biogas beats Bioethanol       » Brain 'switch' can Turn off Drug Addiction (Eye on China)       » Novel Imaging Technology REFI takes Clinicians closer to detecting Stage 0 Tumour Lesions (Eye on China)      
BIOBOARD - SINGAPORE
New discovery of biomarker to improve diagnosis, prognosis and treatment of esophageal squamous cell carcinoma
Esophageal Squamous Cell Carcinoma (ESCC), the major histological form of esophageal cancer, is the leading cause of cancer death worldwide. Scientists from the National University of Singapore (NUS) have discovered a biomarker, called adenosine deaminase acting on RNA-1 (ADAR1), which has the potential to improve the diagnosis, prognosis and treatment of this disease.

Led by Dr. Polly Chen from the Cancer Science Institute of Singapore (CSI Singapore) at NUS, the team is also the first to demonstrate that the editing of protein-making sequences promotes the development of ESCC.

Currently, there is poor prognosis for ESCC patients and the five-year overall survival rate ranges from 20 to 30 per cent. As such, there is an urgent need for biomarkers which can diagnose this disease as early as possible, estimate reaction to chemotherapy or radiotherapy in patients and predict the overall survival rate of patients undergoing treatment.

How ADAR1 serves as a biomarker

In normal human cells, deoxyribonucleic acid (DNA), which comprises the genetic code, serves as a template for the precise production of ribonucleic acid (RNA) such that the DNA code and RNA code are identical. Editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. This RNA editing is likely to play a role in the formation of tumors by either inactivating a tumor suppressor or activating genes that promote tumor progression.

In their study, the NUS researchers discovered that the RNA editing enzyme ADAR1, which catalyzes the editing process, is significantly over-expressed in ESCC tumors. They observed that ADAR1 changes the product of the AZIN1 protein to a form which promotes the development of the disease. Clinically, the tumoral over-expression of ADAR1 was correlated with the shorter survival time of ESCC patients.

The findings suggest that ADAR1 can serve as a useful biomarker to detect disorders leading to ESCC and as a potential therapeutic target. The study may also provide the key to a biological process for drug development in the treatment of ESCC.

Said Dr. Chen, "Investigating the connection between ADAR1-mediated RNA editing and cancer progression is only the initial step in this research. The tumoral over-expression of ADAR1 can be used as an early warning sign of ESCC and halting or reversing the process may block the cells' conversion from normal to malignant."

Moving forward, the researchers will further investigate the key RNA editing events regulated by ADAR1 during ESCC development. They plan to develop a method to correct the RNA editing process through restoring ADAR balance by silencing ADAR1 and reinstating a specific hyper-edited or hypo-edited transcript.

Click here for the complete issue.

EDITORS' CHOICE  

Credits to: American Chemical Society
COLUMNS  

APBN Editorial Calendar 2015
Trends and Predictions for 2015 Robotics in Healthcare Nutrition Universal Health Coverage
Start-Up Biotech Companies Preventative and Translational Medicine Biofuels ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development Antibody Engineering in Japan Christmas Edition
APBN Editorial Calendar 2016
Korea's Biotechnology Industry Nutrition and Allergies: Are we, Too Clean? Medical Devices and Technology: Innovation that leaves an Inspiration Tobacco Smoking: The 'Real' Cost of One Cigarette
Life-Saving Opportunities: A Guide to Regenerative Medicine Occupational Health Water Technology Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy