LATEST UPDATES » Vol 22, No 03, March 2018 – Women in Science - Making a difference       » Brain aging in ASEAN       » Chinese scientists find antidote to centipede venom       » Measuring the risks and rewards of drug development       » Ketone drink could help diabetics by lowering blood sugar       » What value-based healthcare means for Asia       » Improve healthcare access to tackle Asia's healthcare challenge      
Gecko Biomedical's co-founders demonstrate a 'bio-inspired' tissue adhesive that shows promise for minimally invasive heart surgery and vessel repair
Gecko Biomedical, a French medical device company developing 'bio-inspired' biodegradable surgical glues and patches for wound closure, have published data demonstrating the potential of its paradigm-shifting technologies for minimally invasive reconstructive heart surgery.

'Bio-inspired' biodegradable surgical glue repairs defects of the heart and blood vessels

The data describe a revolutionary biodegradable and biocompatible surgical glue that was inspired by adhesive mechanisms observed in nature that function in challenging yet comparable (wet and dynamic) environments to those found in the body.

The 'bio-inspired' glue described is non-toxic, binds strongly to tissues offering a leak-proof seal on demand, and works well in the presence of actively contracting tissues and blood flow. The authors demonstrate how the adhesive, alone or in conjunction with a biodegradable patch, can effectively be used to repair defects (ruptures) of the heart and blood vessels during minimally invasive procedures.

Precise control of the wound closure process could shift the surgical paradigm

The glue is based on the combination of safe, naturally occurring compounds to form a biocompatible pre-polymer with tunable adhesive and mechanical properties. The glue is soft and elastic when applied to the wet surfaces of the wounds where it adheres gently to the tissues, permitting fine adjustments or repositioning when used with the patch. The glue is activated (polymerized) upon exposure to ultraviolet (UV) light to form a strong, leak-proof but flexible seal, giving the surgeon full control of the process. The adhesive can be engineered with mechanical characteristics similar to arteries and the digestive system, where initial applications are targeted. The authors also describe how the composition of the pre-polymer can be adjusted for strength or rate of biodegradation to suit the wound being repaired.

Jeffrey Karp, from the Department of Medicine at the Brigham and Women's Hospital, a co-founder of Gecko Biomedical and co-senior author of the study, said: "The tissue adhesive that we developed satisfies a long list of design criteria including biodegradation, biocompatibility, ability to strongly adhere on-demand to tissue with a water-tight seal in the presence of flowing blood, and elastic properties to accommodate cyclical forces such as those exerted by a beating heart or blood vessel. It offers the potential to reduce the invasiveness of surgical procedures, reduce operative times, and improve outcomes for patients. "

"This platform of adhesive elastomers is truly versatile to address multiple meaningful applications in the clinic, " said Maria N. Pereira, Ph.D., co-first author of the study who was previously in the Department of Medicine at the Brigham and Women's Hospital and is now Head of Adhesive Technologies at Gecko Biomedical.

Christophe Bancel, Chief Executive Officer of Gecko Biomedical, added: "The science and research supporting the development of Gecko's liquid film adhesive and patch technologies is of the highest quality. What has been achieved so far is very exciting and we are focused on undertaking the further necessary steps to get these innovative products into the hands of surgeons within the next few years, for the benefit of patients. "

Source: PR Newswire

Click here for the complete issue.

news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
Asia Pacific Biotech News

Lady Ganga: Nilza'S Story
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2018
Obesity / Outlook for 2018
Searching for the fountain of youth
Women in Science - Making a difference
Digestive health / Intellectual property
Asthma / Dental health
Oncology / Biotech landscape in APAC
Water management / Vaccination
Regenerative medicine / Biotech start ups
Digital healthcare / 3D printing
Bones / Breast cancer
Liver health / Top science research nations & institutions
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy