LATEST UPDATES » Christmas Edition: What's your 360o View?       » Hong Kong-Swiss joint medical researchers to fight Cancer       » New agreement launches collaboration between New Zealand and China in Medical Science       » Gait recorded by Smart Phone reveals Your Emotion       » What to expect in year 2050?       » International Mountain Day: Are we making a mountain out of a molehill?      
A*STAR scientists create stem cells from a drop of blood
Scientists at Singapore's Agency of Science, Technology and Research, A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood. The method also enables donors to collect their own blood samples, which they can then send to a laboratory for further processing. The easy access to blood samples using the new technique could potentially boost the recruitment of greater numbers and diversities of donors, and could lead to the establishment of large-scale hiPSC banks.

By genetic reprogramming, matured human cells, usually blood cells, can be transformed into hiPSCs. As hiPSCs exhibit properties remarkably similar to human embryonic stem cells, they are invaluable resources for basic research, drug discovery and cell therapy. In countries like Japan, USA and UK, a number of hiPSC bank initiatives have sprung up to make hiPSCs available for stem cell research and medical studies.

Current sample collection for reprogramming into hiPSCs include invasive measures such as collecting cells from the bone marrow or skin, which may put off many potential donors. Although hiPSCs may also be generated from blood cells, large quantities of blood are usually required. In this study, scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into hiPSCs. The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency. A patent has been filed for the innovation.

The accessibility of the new technique is further enhanced with a DIY sample collection approach. Donors may collect their own finger-pricked blood, which they can then store and send it to a laboratory for reprogramming. The blood sample remains stable for 48 hours and can be expanded for 12 days in culture, which therefore extends the finger-prick technique to a wide range of geographical regions for recruitment of donors with varied ethnicities, genotypes and diseases.

By integrating it with the hiPSC bank initiatives, the finger-prick technique paves the way for establishing diverse and fully characterized hiPSC banking for stem cell research. The potential access to a wide range of hiPSCs could also replace the use of embryonic stem cells, which are less accessible. It could also facilitate the set-up of a small hiPSC bank in Singapore to study targeted local diseases.

Dr Loh Yuin Han Jonathan, Principal Investigator at IMCB and lead scientist for the finger-prick hiPSC technique, said, "It all began when we wondered if we could reduce the volume of blood used for reprogramming. We then tested if donors could collect their own blood sample in a normal room environment and store it. Our finger-prick technique, in fact, utilized less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Dr Stuart Alexander Cook, Senior Consultant at the National Heart Centre Singapore and co-author of the paper, said "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells. This is a well-designed, applicable technique that can unlock unrealized potential of biobanks around the world for hiPSC studies at a scale that was previously not possible."

Prof Hong Wanjin, Executive Director at IMCB, said, "Research on hiPSCs is now highly sought-after, given its potential to be used as a model for studying human diseases and for regenerative medicine. Translational research and technology innovations are constantly encouraged at IMCB and this new technique is very timely. We hope to eventually help the scientific community gain greater accessibility to hiPSCs for stem cell research through this innovation."

Click here for the complete issue.

news Nanyang Technological University Smart Chip tells you how healthy your battery is
news Mechanobiology Institute, Singapore (MBI) and Cancer Science Institute of Singapore (CSI) at National University of Singapore
news The Future of Cities - A collaboration between Channel NewsAsia (Perspectives) and Newcastle University

Christiana Figueres on COP21 Paris and the World's Response to Climate Change click here.

APBN Editorial Calendar 2015
Trends and Predictions for 2015
Robotics in Healthcare
April & May:
Universal Health Coverage
Start-Up Biotech Companies
Preventative and Translational Medicine
ASEAN Economic Community and Asia's Life Sciences Industry
Big Data: Healthcare and Drug Development
Clear Air
December (Christmas Edition):
What's your 3600 view?
APBN Editorial Calendar 2016
Korea's Biotechnology Industry
Antibody Engineering in Japan
Life-Saving Opportunities: A Guide to Regenerative Medicine
Tobacco Smoking: The 'Real' Cost of One Cigarette
Medical Devices and Technology
Occupational Health
Water Technology
Olympics: Evolution of Sports
Respiratory: Seasonal flu viruses
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
Editorial calendar is subjected to changes. – Editor: Yuhui N Lin
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy