HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, Volume 2, February 2016 Biomedical Research Governance       » Tissue banking in Singapore — An Evolving Enterprise       » China Recognizes Prominent Scientists and Stresses on Innovation       » NUS Researchers Uncover Potent Parasite-killing Mechanism of Nobel Prize-Winning Anti-Malarial Drug       » A New Water Robot "Born" to Detect Water Quality       » Probing the Mystery of How Cancer Cells Die       » Researchers Find Link between Processed Foods and Autoimmune Diseases       » Unravelling the Genetics of Pregnancy and Heart Failure      
BIOBOARD - EUROPE
Inflammation mobilizes tumor cells

Malignant tumors pose a major threat to survival largely because they shed mobile cells that can form secondary tumors in other tissues. This process requires a fundamental change in the character of cells within the primary tumor, insofar as members of a localized cell mass must be converted into actively migrating cells that invade into the surrounding tissue and blood vessels, and finally settle in distant tissues. A growing body of evidence suggests that inflammatory reactions promote such cellular transformation. The protein interleukin 6 (IL-6) is known to a play a significant role in inflammatory signalling. IL-6 is a cytokine, a signal molecule that is produced and secreted both by immune cells and by tumor cells and binds specifically to a receptor (IL-6R) that is found on the surfaces of many cell types. "As we have now shown, even brief exposure to IL-6 can lead to long-lasting alterations in colon cancer cells that enhance their mobility and thus increase their metastasizing potential," says Heiko Hermeking of LMU's Institute of Pathology.

Short RNA strands repress metastasis

Hermeking and his colleagues set out to discover the functional basis for this effect of IL-6. Using cell cultures derived from colon carcinomas, they found that IL-6 is part of a feedback loop, which also includes a short RNA, microRNA-34a (miR-34a). It turns out that miR-34a plays a central role in repressing the production of tumor-promoting proteins, and thereby normally serves to inhibit tumorigenesis and metastasis. But as Hermeking explains, "Activation of IL-6R upon binding of IL-6 essentially disables this inhibitory mechanism. It does so by activating the transcription factor STAT3, which in turn inhibits expression of the miR-34a gene by directly binding to it." As the Hermeking lab could show, expression of the IL-6 receptor is itself directly repressed by miR-34a. Therefore, loss of the microRNA leads to overproduction of the cytokine receptor. Taken together, IL-6R and miRNA-34a form a feedback loop and depending on whether miR-34a or IL-6 is present in excess, tumor-promoting genes are either repressed or activated.

The feedback loop operates in vivo

Inflammation is associated with increased secretion of IL-6. The newly characterized signal mechanism that acts between IL-6R and miR-34a via STAT3 therefore provides a functional link that helps explain how chronic inflammation facilitates the formation of metastases. "We have demonstrated the significance of this link in a mouse model system, based on the use of a miR-34a-deficient mouse strain that we had generated. In a collaboration with Professor Florian Greten (Georg-Speyer-Haus, Frankfurt/M.) we found that these mutant mice show an increased tendency to develop inflammation-induced tumors", says Hermeking. Notably, these miR-34a-deficient tumors invaded into neighbouring tissue, which was not observed in normal mice. Using cultured cells derived from human tumors of the breast and prostate gland, they confirmed that the IL6R/STAT3/miR-34a feedback loop is also activated in other tumor types. "Furthermore, analysis of tumor samples from large cohorts of colorectal cancer patients revealed that activation of the loop is associated with metastasis", Hermeking reports.

The new results show that miR-34a inactivation contributes to metastasis by activating the oncogenic IL-6R/STAT3 pathway. The discovery of this feedback mechanism also offers a number of targets for therapeutic intervention. In addition to STAT3 and IL-6, which are already targeted by a number of anti-tumor agents, the new study directs attention to the potential of miR-34a as a further focus of drug development for the treatment of metastasizing colon tumors. "We have previously shown that the miR-34a gene is often epigenetically inactivated by CpG methylation in tumors, which are more likely to metastasize. Detection of miR-34a inactivation may therefore represent a useful prognostic marker", says Hermeking.

Click here for the complete issue.

NEWS CRUNCH  
news EmTech Asia Opens: Features 50 speakers on innovation and emerging technologies
news Russia's only project to supply local high-tech anti-cancer drugs abroad continues with the first shipment to Vietnam
news Wheat Genome Sequencing Gets Major Boost
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Primates in Biomedical Research
COLUMNS  
\
APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Cancerology / Oncology
May:
Guest Editorial - Antibody Informatics In Japan
June:
Medical Devices and Technology
July:
Water Technology
August:
Occupational Health
September:
Olympics: Evolution of Sports
October:
Respiratory: Seasonal flu viruses
November:
Tobacco Smoking
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» Editorial Enquiries: biotech_edit@wspc.com
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   Ms PoPo Kwok or Ms Sok Ching Lim/td>
Copyright© 2015 World Scientific Publishing Co Pte Ltd  •  Privacy Policy