HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Vol 21, No 10, September 2017 – Cardiovascular diseases       » Test strips for cancer detection get upgraded with nanoparticle bling       » Smart nano-pesticide to combat soil and water contamination       » China plans to launch "brain project" by year end       » UNAIDS encourages Chinese to produce drugs for Africa       » Korea-Singapore Healthcare Incubator to support Korean firms in Singapore and Southeast Asia       » Nanomaterial wrap for improved tissue imaging      
BIOBOARD - UNITED STATES
Building heart tissue that beats

When a heart gets damaged, such as during a major heart attack, there's no easy fix. But scientists working on a way to repair the vital organ have now engineered tissue that closely mimics natural heart muscle that beats, not only in a lab dish but also when implanted into animals. They presented their latest results at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.

"Repairing damaged hearts could help millions of people around the world live longer, healthier lives," said Nasim Annabi, Ph.D.

Right now, the best treatment option for patients with major heart damage — which can be caused by severe heart failure, for example — is an organ transplant. Unfortunately, there are far more patients on waitlists for a transplant than there are donated hearts. Even if a patient receives a new heart, complications can arise.

The ideal solution would be to somehow repair the tissue, which can get damaged over time when arteries are clogged and starve a part of the heart of oxygen. Scientists have been searching for years for the best fix. The quest has been confounded by a number of factors that come into play when designing a complex organ or tissue.

Simple applications, such as engineered skin, are already in use or in clinical trials. However, building tissue for an organ as complicated as the heart requires a lot more research. To address this challenge and engineer complex 3-D tissues, researchers at the Brigham and Women's Hospital and Harvard Medical School in Boston and the University of Sydney in Australia were able to combine a novel elastic hydrogel with microscale technologies to create an artificial cardiac tissue that mimics the mechanical and biological properties of the native heart.

"Our hearts are more than just a pile of cells," said Ali Khademhosseini, Ph.D., from Harvard Medical School. "They're very organized in their architecture."

To tackle the challenge of engineering heart muscle, Khademhosseini and Annabi have been working with natural proteins that form gelatin-like materials called hydrogels.

"The reason we like these materials is because in many ways they mimic aspects of our own body's matrix," Khademhosseini said. They're soft and contain a lot of water, like many human tissues.

His group has found that they can tune these hydrogels to have the chemical, biological, mechanical and electrical properties they want for the regeneration of various tissues in the body. There was one way in which the materials didn't resemble human tissue. Like gelatin, early versions of the hydrogels would fall apart, whereas human hearts are elastic. The elasticity of the heart tissue plays a key role for the proper function of heart muscles such as contractile activity during beating. So, the researchers developed a new family of gels using a stretchy human protein aptly called tropoelastin. That did the trick, giving the materials much needed resilience and strength.

However, building tissue is not just about developing the right materials. Making the right hydrogels is only the first step. They serve as the tissue scaffold. On it, the researchers grow actual heart cells. To make sure the cells form the right structure, Khademhosseini's lab uses 3-D printing and microengineering techniques to create patterns in the gels. These patterns coax the cells to grow the way the researchers want them to. The result: small patches of heart muscle cells neatly lined up that beat in synchrony within the grooves formed on these elastic substrates. These micropatterned elastic hydrogels can one day be used as cardiac patches. Khademhosseini's group is now moving into tests with large animals. They are also using these elastic natural hydrogels for the regeneration of other tissues such as blood vessels, skeletal muscle, heart valves and vascularized skin.

Click here for the complete issue.

NEWS CRUNCH  
news Medical technology experts to address the impact of innovation in shaping patient outcomes across Asia Pacific
news China biotech's 'coming out party' masks long road ahead
news SingHealth, Duke NUS and GSK to conduct large-scale big data study on asthma and COPD in Singapore
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Lady Ganga: Nilza'S Story
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2017
January:
Healthcare Focus: LUNGS
February:
War on CANCER
March:
Get to Know TCM
April:
Diabetes: The Big Picture
May:
The Piece of Your Mind - Brain Health/Science
June:
Advocacies in Support of Rare Disease Patients
July:
Food Science & Technology
August:
Eye – the Window to your Soul
September:
Infectious Diseases
October:
A change of heart — Cardiovascular diseases
November:
Diseases threatening our Children
December:
Skin Diseases/Allergic Reactions
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2017 World Scientific Publishing Co Pte Ltd  •  Privacy Policy