LATEST UPDATES » Vol 22, No 03, March 2018 – Women in Science - Making a difference       » Brain aging in ASEAN       » Chinese scientists find antidote to centipede venom       » Measuring the risks and rewards of drug development       » Ketone drink could help diabetics by lowering blood sugar       » What value-based healthcare means for Asia       » Improve healthcare access to tackle Asia's healthcare challenge      
Hokkaido University and Hitachi complete a facility incorporating a novel proton beam therapy system for cancer treatment developed jointly under Japan's FIRST program

Hokkaido University and Hitachi, Ltd. have completed construction of facilities incorporating the "PROBEAT-RT Proton Beam Therapy System," a novel proton beam cancer treatment system, within the Hokkaido University Hospital. Hokkaido University and Hitachi had been jointly developing the PROBEAT-RT after the project was awarded a grant in 2010 under the Funding Program for World-Leading Innovative R&D on Science and Technology (the "FIRST Program"), a national project sponsored by the Japanese government.

The FIRST Program is a major research support structure established as part of a Japanese government initiative to promote science and technology. At a meeting of the Council for Science and Technology Policy in March 2010, out of a total of 565 applications from across Japan, 30 "Core Researchers and Projects" were awarded grants based on their notable potential in the advancement of Japanese science and technology. Hokkaido University's "Advanced Radiation Therapy Project Real-time Tumor-tracking with Molecular Imaging Technique" project was awarded a FIRST grant following an application by Professor Hiroki Shirato of the Department of Radiation Medicine, Graduate School of Medicine*. This was the only application accepted in the field of radiation therapy. The proposed system has gained worldwide attention as a potential driving force behind the advancement of radiation treatment and cancer therapy.

The goal of "Advanced Radiation Therapy Project Real-time Tumor-tracking with Molecular Imaging Technique" is to develop a treatment system that can dramatically reduce the irradiation of normal tissue, in a compact, low-cost system that demonstrates international competitiveness. This goal is achieved by combining the Real-time Tumor-tracking Radiation Therapy developed by Hokkaido University through X-ray therapy with Hitachi's spot scanning proton beam irradiation technology, which was delivered for the first time ever to a general hospital. In this way, Hokkaido University and Hitachi will offer a proton beam therapy system that can accurately irradiate a tumor that moves due to respiration, for example in the lung and liver.

At the recently completed facility, using the compact PROBEAT-RT Proton Beam Therapy System created through joint development activities, Hokkaido University will first provide treatment using spot scanning irradiation technology from Hitachi, while at the same time striving to quickly develop a treatment system that incorporates its own moving tumor tracking irradiation technology. Hitachi has already applied for approval for manufacture and sales of the treatment system combining spot scanning irradiation and Real-time Tumor-tracking Radiation Therapy, and hopes to receive approval and begin treatments in the first half of FY 2014.

The PROBEAT-RT Proton Beam Therapy System is a compact, low-cost proton beam cancer treatment system developed jointly by Hokkaido University and Hitachi. By merging Hitachi's technologies with the expertise that Hokkaido University has developed through radiation treatment, and by using only spot scanning irradiation as the irradiation method, it became possible to reduce the size of the gantry, the irradiation nozzle, and the accelerator. In this approach, they have created a treatment system that is easy to use and more compact overall, and which demonstrates outstanding international competitiveness. In comparison to the PROBEAT-III Proton Beam Therapy System, which was released previously by Hitachi, the circumference of the accelerator has been reduced to 18 m from the original 23 m, while the gantry, which had a maximum external length of 11 m and an internal diameter of 3.5 m, has been reduced in size to a maximum external length of 9 m and an internal diameter of 2.5 m. The installation area required for the system as a whole has been reduced by approximately 30 percent.

Hokkaido University and Hitachi will combine their respective outstanding technologies, knowledge, and experience in the medical and engineering fields, to contribute to cutting-edge radiation therapy and cancer treatments that maintain excellent quality of life (QOL) for patients through the development of this Proton Beam Therapy System.

Source: Business Wire

Click here for the complete issue.

news Shire, Microsoft and EURORDIS form Global Commission to accelerate time to diagnosis for children with rare diseases
news EmTech Asia explores future of life, humanity and economy
news Biology of Ageing II - Impactful Interventions
Asia Pacific Biotech News

Lady Ganga: Nilza'S Story
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2018
Obesity / Outlook for 2018
Searching for the fountain of youth
Women in Science - Making a difference
Digestive health / Intellectual property
Asthma / Dental health
Oncology / Biotech landscape in APAC
Water management / Vaccination
Regenerative medicine / Biotech start ups
Digital healthcare / 3D printing
Bones / Breast cancer
Liver health / Top science research nations & institutions
AIDS / Breakthrough of the year/Emerging trends
Editorial calendar is subjected to changes.
About Us
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Lim Guan Yu
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
Copyright© 2018 World Scientific Publishing Co Pte Ltd  •  Privacy Policy