HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS CONFERENCE CALENDAR
LATEST UPDATES » Volume 20, No. 9, September 2016 – Infectious Diseases       » Curcumin Derivatives May Prevent Alzheimer's Disease by Promoting Amyloid- Clearance       » Varian Chosen to Equip First Government Owned Proton Centre in China       » Medtronic and SingHealth Collaborate on a Centre of Excellence to Fight Diabetes       » NCCS Awards Contract for Proton Beam Therapy System to Hitachi Asia      
BIOBOARD - UNITED STATES
Researchers discover genetic markers that may predict when people with heart disease are likely to have heart attacks
Researchers at the Intermountain Medical Center Heart Institute in Murray, Utah, have identified a biological process that may help physicians predict when someone with heart disease is likely to have a heart attack in the near future.

A new study by the team has identified plasma levels of two markers — microRNA 122 and 126 — that appear to decline a few days before a person suffers a heart attack. Results of the study could help the 715,000 Americans who suffer from heart attacks each year.

"It's always been a mystery trying to identify people with heart disease who are at imminent risk of having a heart attack," says Oxana Galenko, DBMSC, with the Intermountain Medical Center Heart Institute Cardiovascular Research Laboratory, the lead researcher in the study. "Currently, there's no blood test that allows us to say, 'yes, this person will likely have a heart attack in the near future'. But identifying what happens to these markers has given us a place to start."

During a heart attack, one of the coronary arteries that feed blood into the heart becomes completely blocked, preventing necessary oxygen and nourishment from reaching the heart muscle. When this happens, the heart muscle dies and never recovers, resulting in heart failure or death.

The discovery of the diminishing microRNA markers began with the understanding of a basic process in biology known as the central dogma. DNA contains the genetic information an organism uses to grow and develop. Messenger ribonucleic acid (mRNA) communicates this information to the rest of the body and translates the genetic information into protein. This is known as gene expression.

In 1993, scientists discovered small forms of RNA didn't follow standard translation patterns. These forms, known as microRNA, weren't making proteins, but rather were interfering with mRNA to prevent translation.

At the same time, physicians at the Intermountain Medical Center Heart Institute created the Intermountain Heart Study Registry, which includes blood samples from a massive number of heart patients for research. Today the registry contains more than 30,000 DNA samples.

Galenko and her team looked at samples in the registry from 30 patients who had suffered a heart attack within 44 days of having their blood collected.

Researchers examined factors such as age, gender, race, elevated amounts of cholesterol in the bloodstream, high blood pressure, and diabetes. They noticed that within two weeks of experiencing a heart attack, patient's microRNA 122 and 126 dramatically dropped.

The result: Galenko believes that something about these microRNAs being present and interrupting the translation process prevents people with heart disease from having a heart attack.

"MicroRNAs turn things off. Whatever they usually turn off in people with heart disease before a heart attack isn't being turned off when microRNA levels are reduced, which may be causing something else to be activated," she says. "MicroRNAs act like a watch dog, and when their levels are reduced, heart disease takes a turn for the worse and heart attacks are likely to occur."

Further research is needed to find out more about what takes place when the microRNAs disappear, says Galenko.

"We need to do additional research with more samples, but we've found a pattern that may help us understand the factors that lead to a heart attack, and we've developed a lot more questions that further research will help answer," she says.

"Ultimately, our goal is to develop a test that predicts when a heart attack is going to occur in patients with heart disease," Galenko adds. "This would help physicians intervene proactively and stop heart attacks from happening. There are monitors people wear that detect blood chemistry, and if we really wanted to look into the future, perhaps we could develop something similar, something people who are at risk for a heart attack could wear to monitor these microRNAs."

Click here for the complete issue.

NEWS CRUNCH  
news Enterprise meets technology: More than 300 enabling innovations showcased at TechInnovation
news CPhI's Pre-Connect Congress outlines current trends in pharma
news World Population Day 2016
PR NEWSWIRE  
Asia Pacific Biotech News
EDITORS' CHOICE  

Lady Ganga: Nilza'S Story
COLUMNS  
Subscribe to APBN E-Newsletter
Find us under 'Others' option to receive APBN e-newsletters thrice a month!

APBN Editorial Calendar 2016
January:
Guest Editorial - Biotechnology In Korea
February:
Guest Editorial - Biomedical Research Governance
March:
Guest Editorial - Life-Saving Opportunities: A Guide to Regenerative Medicine
April:
Leading-Edge ONCOLOGY
May:
Healthcare Systems & Policies in Asia
June:
Medical Devices & Healthcare Technology
July:
Water Technology and Management
August:
Novel Technologies for Antibody Drug Discovery in Japan
September:
Infectious Diseases
October:
Medical Tourism
November:
Big Data in Healthcare
December:
Orthopaedics
Editorial calendar is subjected to changes.
– Editor: Carmen, Jia Wen Loh
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Carmen
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2016 World Scientific Publishing Co Pte Ltd  •  Privacy Policy