HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 25, No. 01, January 2021 – Home-Based Diagnostic Testing: Revolutionizing IBD Treatment       » Study Reveals Understanding of China’s Carbon Emission Balance       » Developing Nanomaterials for Better Performance       » Helping Farmers Monitor Plant Health and Improve Crop Yield       » Protecting the Brain through Gut-Trained Immune Cells       » Using Machine Learning to Predict Anti-Cancer Drug Efficacy      
Vol 25, No. 01, January 2021   |   Issue PDF view/purchase
EYE ON CHINA
Trade-off Between Global Warming Targets and Seasonal Rainfall
Team of researchers from the Institute of Atmospheric Physics (IAP) at the Chinese Academy of Sciences discover that seasonal precipitation could be enhanced if global warming is limited to certain temperatures.

The Paris Agreement in 2015 proposed a target to limit global warming to less than 2°C and pursue efforts to limit warming to less than 1.5°C. Since then, great efforts have been devoted to exploring the impacts of the 1.5°C and 2°C warming scenarios.

A recent work published in Earth's Future by a team of researchers from the Institute of Atmospheric Physics (IAP) at the Chinese Academy of Sciences has found that the seasonal cycle of precipitation is likely to enhance at stabilized 1.5°C and 2°C warming scenarios.

“Based on the output data of the Community Earth System Model low-warming experiment, we conclude that the enhancement is mainly caused by the increase in water vapor,” said Chen Ziming, the first author of the study and a doctoral student from IAP.

The intensity of seasonal cycle is defined as the difference in precipitation between wet and dry seasons, representing the contrast of precipitation within a year. The wet and dry seasons are usually fixed to be within June to August and December to February, respectively, in the Northern Hemisphere and vice versa in the Southern Hemisphere. Neither the spatial distinction nor the temporal shifts in the wet and dry seasons have previously been considered.

"In our study, the intensity of the seasonal cycle is represented by the difference between mean precipitation in the wet and dry seasons for different regions and for each year," said Chen Ziming.

Chen Ziming and his collaborators in IAP found that based on the above metric, the intensity of seasonal cycle would enhance by 3.90 percent and 5.27 percent under 1.5°C and 2°C warming, respectively. Under the additional 0.5°C of warming, a pronounced enhancement in seasonal cycle occurred over 22 percent of the land regions.

The enhancement was associated with the enhanced precipitation during wet season, caused by thermodynamic responses due to the increased moisture. It indicated that the contrast between the wet and dry seasons would become stronger, resulting in a more uneven distribution of freshwater resources within a year. The probability of flooding would increase in the wet season.

Chen Ziming added that, “This study emphasizes the pronounced enhancement in seasonal cycle over land regions associated with the additional 0.5°C of global warming, despite the insignificant increases in the annual precipitation. Though the number in temperature seems small, 0.5°C still matters.”

NEWS CRUNCH  
news Highlights from the E&L China 2020 Conference
news Asia’s ageing population drives development of rehabilitation technologies targeting elderly disabilities
news Virtual Expo Connect to empower access for international pharma to the world’s largest pharma ingredients market
news WEIPU, AstraZeneca, Huadong Medicine, Saint-Gobain, Baxter, Wuxi AppTec, Henlius, Medtronic and more confirmed to speak at E&L China this December
SPOTLIGHT  

MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Contribute to APBN
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Deborah Seah
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2021 World Scientific Publishing Co Pte Ltd  •  Privacy Policy