The Study for the Prediction of the Turning Period for Outbreak of COVID-19 Spread in China based on the iSEIR Model

George Xianzhi Yuan1,4, Lan Di5, Yudi Gu6, Guoqi Qian7 and Xiaosong Qian2

1Business School, Chengdu University, Chengdu 610106 China
2Center for Financial Engineering, Soochow University, Suzhou 215008
Email: george_yuan99@suda.edu.cn (for Yuan) & qianxs@suda.edu.cn (for X Qian)
3School of Fintech, Shanghai Lixin University of Accounting & Finance, Shanghai 201209, China.
4Business School, Sun Yat-Sen University, Guangzhou 510275 China
5School of AI and Computer Science, Jiangnan University, Wuxi 214122, China. Email: dilan@jiangnan.edu.cn
6Center of Information Construct and Management, Jiangnan University, Wuxi, 214122, China. Email: udy1215@jiangnan.edu.cn
7School of Math & Statistics, University of Melbourne, Melbourne VIC 3010, Australia
Email: qguoqi@unimelb.edu.au

Abstract
The goal of this study is to report how to establish a general framework for predicting the so-called critical “Turning Period” in an infectious disease epidemic such as the COVID-19 outbreak in China early this year. This framework enabled a timely prediction of the turning period when applied to Wuhan COVID-19 epidemic and informed the relevant authority for taking appropriate and timely actions to control the epidemic. It is expected to provide insightful information on turning period for the world's current battle against the COVID-19 pandemic.

We want to reinforce that emergency risk management is always associated with the implementation of an emergency plan. The identification of the Turning Time Period is key to emergency planning as it provides a timeline for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.

By using the observed daily cases of COVID-19 in Wuhan from February 6 to 10, 2020 as the input to the iSEIR model and were able to generate the trajectory of COVID-19 cases dynamics for the following days at midnight of February 10 based on the updated model, from which we predicted that the turning period of COVID-19 outbreak in Wuhan would arrive within one week after February 14. This prediction turned to be timely and accurate, providing adequate time for the government, hospitals, essential industry sectors and services to meet peak demands and to prepare aftermath planning.

Finally, we want to reinforce that emergency risk management is always associated with the implementation of an emergency plan. The identification of the Turning Time Period is key to emergency planning as it provides a timeline for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.

Our study also supports the observed effectiveness on flatting the epidemic curve by decisively imposing the “Lockdown and Isolation Control Program” in Wuhan since January 23, 2020. The Wuhan experience provides an exemplary lesson for the whole world to learn in combating COVID-19.

Key Words: Turning Period; Turning Phase; Spatio-Temporal model; iSEIR; Dynamic modeling; Delta and Gamma; Emergency Plan; Outbreak of Epidemic Infectious Disease; Supersaturation Phenomenon; Simulation; Novel coronavirus (COVID-19); Lockdown and Isolation control program; Multiplex network.
1. The Background and Related Literature

Infectious disease epidemics always present challenges to human society, threatening the safety of human life and causing social upheaval and economic losses. In recent years, novel virus outbreaks have been increasing worldwide, from the 2003 SARS-CoV, the H1N1 influenza A virus in 2009, the MERS-CoV in 2012, the Ebola virus in 2015, the Chai virus in 2016, the H5N7 avian influenza virus in 2017, to the recent coronavirus (COVID-19) that emerged at the end of 2019 (in Wuhan, China). These outbreaks have brought great loss to human life, disrupted population processes, and negatively impacted global development.

The current coronavirus disease 2019 (COVID-19) outbreak began in Wuhan City (Hubei province of China) in later December 2019 and quickly spread to other cities in China in a matter of days. It was announced as a public health emergency of international concern by the World Health Organization (WHO) on 30 January 2020. Predicting the development of the outbreak as early and as reliably as possible is critical for action to prevent its spread with necessary implementation of emergency response plan.

Furthermore, the current COVID-19 outbreak is a particularly urgent public health event. Apart from the challenges the virus presented to China's health system, it has spread rapidly to other regions and countries worldwide. We currently do not have a unanimous metric of estimating when the global situation of the virus will be under control.

In this study, we like to discuss how to establish a general framework for the prediction of the critical so-called “Turning Period” which would play a very important role in assisting better plans for the time frame of emergence plans, in particular for associated looking forward planning such as the battle with the current pandemics of COVID-19 worldwide.

By assessing the performance of our iSEIR model to predict the timeline of the spread of COVID-19 in Wuhan since late December 2019 under the help of our new concept of “Turning Time Period (Time Period)” to predict the control of the epidemic outbreak measured by a reduction in the number of people infected, it shows that our iSEIR model, an extension of the SEIR model, describes the spread and behavior of infectious diseases for individuals under the framework of a probability perspective works very well to accurately predicted that “the COVID-19 situation in China would peak around mid- to late February as early as 7 February 2020”.

Indeed, we like to emphasize that the identification of the Turning Time Period is the key to have a successful implementation for emergency plan as it provides a timeline for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.

Our study also indicates that the implementation of the emergency program in the practice associated with the “Isolation Control Program (or, say, Wuhan Quarantine Program)” since 23 January 2020 by China in national level may be a good experience by other countries and regions to take a lesson.

During the last century, in the study and modelling mechanics of infectious diseases, the traditional model called “SEIR” denoted for “infectious disease dynamics susceptible–exposed–infectious–resistant” and its various (deterministic) versions have been introduced and been very popular in analyzing and predicting the development of an epidemic. The SEIR models the flows of people between four states: susceptible state variable “S”, exposed variable “E”, infected variable “I”, and resistant variable “R”. Each of those variables represents the number of people in those groups. Take COVID-19 as one example, assume that the average number of exposed cases that are generated by one infected person of COVID-19, this number could be regarded as the so-called “basic reproduction number” (which is indeed the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection), the study on the basic reproduction number, related features for the globally stable endemic and disease-free equilibria and thresholds is always the main stream for people from the
academic research community to the practice in the subject of epidemic disease spread behavior and related social issues.

In particular, a great deal and effort have been done for the study on the process and evolution of the limits of the Basic Reproduction Number and similar thresholds in predicting global dynamics of epidemics. In particular, since the occurrence of COVID-19 later December, 2019 in Wuhan, the study on the impact such as how serious the outbreak of infectious disease to the society, and to prediction how many people would be infected to become infectious, and so on, have been attracted by a large number of scholars with reports.10-15

On the other hand, modelling the situation of COVID-19 and effects of different containment strategies in China with dynamic differential equations and parameters estimation have also been paid a lot attention by a number of scholars.17-24

In particular, Professor Murraya leads his IHME COVID-19 health service utilization forecasting team to work on the estimates of predicted health service utilization and deaths due to COVID-19 by day for the next 4 months for each state in the US. Their objective is to determine the extent and timing of deaths and excess demand for hospital services due to COVID-19 in the US.2,5,8

It seems that almost all of them still follow the way to pay the attention mainly on modelling or forecasting the behavior of spread for epidemic disease directly related to those infected who also become infectious, i.e., the variable "I" of SEIR model. No study pays the attention on the study how to establish a general framework for the prediction of the critical turning period for the spread of pandemic diseases (e.g., the outbreak of COVID-19) in general.

The object of this paper is to fill in this gap as we do believe that it is so important to study the general dynamics for the outbreak of COVID-19 in each country or regions, which faces one simple expectation that how to find in which time period the battle with COVID-19 will be under controlled? By a simple fact that for any spread of infectious disease, we know that in general it is impossible to find or identify the exact turning point (or critical point) for a big pandemic (which means the behavior of the spread of COVID-19 virus is under control) due to various dynamics and associated uncertainty! But if using the idea to think of the a time period (or say, time interval) instead of an exact time point to identify the true change for the behavior of spread for epidemic disease such as in terms of the number of infectious people have significantly be reduced, plus the population of the exposed (E) are also true under the control to reach to certain low level, then it seems possible for us to identify different phases and stages for the mechanics of the outbreak of infectious disease incorporating with some useful tools such as the iSEIR one we introduced in [28].

Thus, the goal of this paper is to discuss how to build the framework for the prediction of the Critical Turning Period for Outbreak of pandemics (e.g., the spread of COVID-19) based on the application of our iSEIR Model. It expects that the concept for the prediction of the critical turning period would provide us a better way to prepare the emergency plan for the prevention and control of COVID-19 in the practice, such as working on the estimates of predicted health service utilization and deaths due to COVID-19 by day for the next 4 months for each state in the US,3 and other countries and regions worldwide.

By assessing the performance of prediction by using the iSEIR model for the timeline of the spread’s mechanics of COVID-19 in Wuhan on dates of 6 Feb and 10 Feb 2020 by using the concept of "Turning Time Period (Time Period)" to forecast the time frame for the control of the epidemic outbreak measured by a reduction in the number of people infected, it shows that our iSEIR model (an extension of the SEIR model) works very well to accurately predicted that “the COVID-19 situation in China would peak around mid-to late February as early as 7 February 2020”. This review also shows that the identification of the Turning Time Period is the key to have a successful implementation for emergency plan as it provides a timeline for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.
2. The Challenges faced by the Emergency Mechanism of Epidemic Prevention and Control of Infectious Diseases Worldwide Today

The idea of the key “SEIR Epidemic Model” can be traced back to Dr. Ronald Ross who received the Nobel Prize for Physiology or Medicine in 1902 for his work on malaria which laid the foundation for combatting the epidemic disease. In 1927, Kermack and McKendrick formulated a simple deterministic model called SIR to describe the dynamic mechanism for directly transmitted viral or bacterial agent in a closed population. Since then, scholars have contributed and advanced this field; a significant milestone in the study of Epidemics was the publication of “The Mathematical Theory of Infectious Diseases” in 1957 by Bailey. Of these, the famous SEIR model, a core subject in Epidemic discipline, like mentioned above, is the basis for describing the mechanism for the spread of infectious diseases, and has been used in a number of research projects and related applications. In the SEIR model, the “S” state refers to the susceptible group (or ignorants) who are susceptible to disease but have not been infected yet; the “E” state refers to the exposed group who are infected but are not infectious yet (or lurkers); the “I” state refers to those infected who also become infectious; and the “R” state refers to those who have recovered from the infection (through treatment or natural recovery) who may or may no longer be infectious, or those who have passed away.

2.1 The Challenges faced by the Emergency Mechanism of Epidemic Prevention and Control

Infectious diseases have always been a major challenge to human society, threatening the safety of human life and causing social upheaval and economic losses. Every scenario of an epidemic outbreak due to a novel infectious disease carries a similar set of challenges: the unknown nature of the new pathogen/strain, a lack of immediate effective treatment and vaccine, and an ill-prepared public health infrastructure to accommodate the surge in potential patients and need for testing. Public health policies that could alleviate and help prevent the impact and scale of an outbreak require significant and massive governmental and societal implementation of emergency planning and intervention strategies. At present, I want to focus the objective of this paper towards three key issues in approaching these outbreaks:

1) **How do we establish a spatiotemporal model for the infectious diseases’ outbreak:** in order describe the mechanics of the spread of infectious diseases?

2) **How do we conduct numerical simulation and risk prediction indicators:** in order to conduct numerical simulation based on the real scenes, which can be used to provide an outlook and planning schedule associated with a key period known as the “Turning Phase” during the spread of infectious diseases?

3) **How do we carry out effective predictive analysis on the epidemic situation of infectious diseases on an ongoing basis:** in order to cooperate with dynamic management, support public health emergency plans/services, and support community responses by establishing a coherent bigdata method for data fusion from different sources with different structure?
In combating these outbreaks, the immediate implementation of an emergency response mechanism delays an epidemic’s peak which affords us more time to control the epidemic by reducing the number of infections in a concentrated period of time. Thus, a successful emergency plan lengthens the "Turning Phase" (or say, "Turning time Period"), the time interval between T_0 and T_1. Effective ways of flattening the curve include intervention actions such distancing or isolation programs (e.g., quarantine program).

Thus, a major challenge faced by our current responses to epidemic prevention and infectious disease control is finding a way to predict the critical time period “Turning Period” or “Turning Phase” when implementing an emergency plan. Knowing this timeline is critical to combat the outbreak of an epidemic or infectious disease.

In this section, we discuss the framework for predicting the “Turning Phase” using our iSEIR Model introduced in28 which was used to successfully predict the “Turning Phase” for the outbreak of epidemic COVID-19 virus from January 2020 to early of March 2020 in China using only data from 10 February 2020. Here we give a brief introduction for our iSEIR model, which stands for the name “individual Susceptible-Exposed-Infective-Removed”.

2.2 The Framework of our iSEIR Dynamic Model with Multiplex Networks

For the convenience of our discussion, we give an introduction on the general framework of our iSEIR model which was introduced in28 for more in details and numerical simulations lined to the applications.

Our iSEIR model operates under a probability perspective for each individual with the name “individual Susceptible-Exposed-Infective-Removed (iSEIR)”, which is an extension of the classic SEIR one. The iSEIR model allows us to conduct simulations from the individual levels located on the nodes of different community networks by incorporating its uncertainty with the probability to conduct random simulation in the corresponding multiplex network.

2.2.1 The Classical SEIR Model

For the SEIR model, the state S refers to the susceptible group (or ignorants) who are susceptible to the disease but have not been infected yet; state E refers to the
exposed group who are infected but are not infectious yet; state I refers to those infected who also become infectious; and state R refers to those who have recovered from the infection (through treatment or natural recovery) and are no longer infectious. We also use $S(t)$, $E(t)$, $I(t)$ and $R(t)$ to represent the proportion of the population being in state S, E, I, and R, at time t, respectively. In the present case, the system of ODEs describing the dynamics of an SEIR epidemic model thus has the following form:

$$\begin{align*}
\frac{dS}{dt} &= -\mu(k)SE \\
\frac{dE}{dt} &= \mu(k)SE - \beta EI \\
\frac{dI}{dt} &= \beta EI - \lambda I \\
\frac{dR}{dt} &= \lambda I
\end{align*}$$

(1)

where μ is the rate at which an exposed individual becomes infective, λ is the recovery rate, and with normalization condition (each variable is in percentage change)

$$S(t) + E(t) + I(t) + R(t) = 1$$

(2)

for every $t \geq 0$ (since the population is considered closed).

The above deterministic SEIR model and its generalizations have received a lot of attention from various researchers. Indeed, the SEIR model represents more accurately the spread of an epidemic than the corresponding SIR model that does not take into account the latent period. The SEIR model has a slower growth rate, since after the pathogen invasion the susceptible individuals need to pass through the exposed class before they can contribute to the transmission process, as shown (by Figure I_SEIR model illustration) below:

![Figure I_SEIR model-Illustration](image)

2.2.2 The Framework of Our iSEIR Dynamic Systems with Multiplex Networks

Based on the former discussion, the iSEIR (see Figure II_iSEIR model Illustration below) is an extension of SEIR model, but presented in different expression, which is a component form as follows in Eq. (3).

$$\begin{align*}
\frac{dS}{dt} &= A - S(t)E(t)\sum_j \mu_j \sum_j p_{ij} - S(t)\sum_i e_i \\
\frac{dE}{dt} &= S(t)E(t)\sum_j \mu_j \sum_j p_{ij} - E(t)I(t)\sum_j \beta_j \sum_k q_{jk} - E(t)\sum_j \alpha_j \\
\frac{dI}{dt} &= E(t)I(t)\sum_j \beta_j \sum_k q_{jk} - I(t)\sum_k \lambda_k \\
\frac{dR}{dt} &= S(t)\sum_i e_i + E(t)\sum_j \alpha_j + I(t)\sum_k \lambda_k
\end{align*}$$

(3)
where, parameters in the systems are illustrated as following:

- where A is the growth rate of new arrivals.
- μ_i denotes the transfer probability from $S(t)$ to $E(t)$.
- p_{ij} denotes the connection probability of the i-th sample in $S(t)$ to the j-th sample in $E(t)$; it equal to 1 if connected or 0 if not.
- ε_i denotes the transfer probability from $S(t)$ to $R(t)$, which is the removed probability.
- β_j denotes the transfer probability from $E(t)$ to $I(t)$.
- q_{jk} denotes the connection probability of the j-th sample in $E(t)$ to the k-th sample in $I(t)$; it equal to 1 if connected or 0 if not.
- α_j denotes the transfer probability from $E(t)$ to $R(t)$.
- λ_k denotes the transfer probability from $I(t)$ to $R(t)$.

The proposed iSEIR model is shown as in Figure II_iSEIR model Illustration below:

In order to make the system (3) short and analyze easily, we use the following denotation:

$$
\begin{align*}
\mu &= \sum_i \mu_i; \\
\varepsilon &= \sum_i \varepsilon_i; \\
\alpha &= \sum_j \alpha_j; \\
\beta &= \sum_j \beta_j; \\
\lambda &= \sum_k \lambda_k; \\
p &= \sum_i \sum_j p_{ij}; \\
q &= \sum_j \sum_k q_{jk}
\end{align*}
$$

(4)

As our iSEIR model is based on the framework of multiplex networks, we also give some notations here, more in details are given in reference 28.

By suppose the population S for the spreading consists of N individuals S_i, $j=1, \ldots, N$; namely $S: \{S_i, j=1, \ldots, N\}$, and also suppose these N individuals are distributed over M continuous domains $U_i, i=1,\ldots, M$, where a domain may refer to a residential district or a network. Then we can conduct the simulation based on framework of probability respective for each individual based on iSEIR in a population multiplex network by following five steps:

Step 1: We first allow the transition from state S to state R directly with probability ε per unit time (the same below) by following equation:
\begin{align}
\frac{dS}{dt} &= A - \mu SE - \varepsilon S \\
\frac{dE}{dt} &= \mu SE - \beta EI - \alpha E \\
\frac{dI}{dt} &= \beta EI - \lambda I \\
\frac{dR}{dt} &= \varepsilon S + \alpha E + \lambda I
\end{align}
(5)

where \(A\) is the growth rate or new comer; \(\varepsilon\) is the probability of a susceptible person being directly transformed into an immune person by means of e.g., isolation; \(\mu\) is the rate of a susceptible being infected; \(\beta\) is the rate of an infected person becoming infectious; \(\alpha\) is the rate of an infected person becoming immune directly; and \(\lambda\) is the rate of an infectious person entering into an immune state. Figure 1 below gives a visual presentation of (5). Note that there is no direction transition between \(S\) and \(I\) in (5) as illustrated by Figure 1 above.

Step 2: Each individual in the rumor spreading network at time \(t\) is identified by its state and position in that state group.

Step 3: We will establish an adjacency matrix to describe the influence effects between individuals.

Step 4: Computing the probabilities of transitions between states involves considering the following two aspects (the K-adjacency method).

Step 4.1: the distances between uninfected individuals and their neighborhoods of infected individuals within; and

Step 4.2: the number of individuals infected.

Step 5: The full specification of the model is given by combining steps 1 to 4 together with an individual-level representation of (5) that is illustrated in Figure 2 above.

These five steps will help us to run the simulations for the observation of the so-called “Supersaturation Phenomenon” under the probability perspective of all individuals by applying iSEIR mode which help us to identify the “Turning Phase”, which are critical for any emergency plan being successful by responding to the challenge any outbreak of pandemics under the emergency in the practice. Thus, the iSEIR will be used as a tool for us to discuss how we can establish the framework for the prediction of the critical “Turning Phase” for the emergency implementation response in an epidemic infectious disease outbreak described in next section.

3. The Framework for the Prediction of the Critical “Turning Phase” based on our iSEIR Model for the Emergency Implementation Response in an Epidemic Infectious Disease Outbreak

In this section, we discuss the framework for predicting the “Turning Phase” using our iSEIR Model introduced\(^{28}\), which was used to successfully predict the “Turning Phase” for the outbreak of epidemic COVID-19 virus from January 2020 to early of March 2020 in China using only data from 10 February 2020. As previously discussed, in the battle for epidemic prevention and control of infectious disease outbreak, it is crucial to implement effective prevention measures in the early stages of an outbreak. Furthermore, identifying the beginning and ending points of the time interval which forms the “Turning Time Period (Time Period)” lets us know how long to expect to implement emergency protocols to
effectively flatten the curve. It is possible to make this predictive analysis of the “Turning Time Period” using the iSEIR model through the “Supersaturation Phenomenon” elaborated below.28

3.1 The Concept of “Turning Time Period (Turing Period)” for Turning Phase

While the exact turning point (or critical point) for any infectious disease spread cannot be precisely determined due to various dynamics and associated uncertainty, by borrowing the variables of “Delta” and “Gamma” practiced in financial risk management37 it is possible to identify the upper and lower limits using, for example, the current tolerable degrees from the change in new (confirmed) patients daily. These indicators then allow us to identify the different phases and stages of an infectious disease outbreak through the iSEIR model, which we elaborate in Part A and Part B. Through this method, it is possible to calculate the critical time period of the “Turning Time Phase (Turning Phase).”

Part A: To Identify Different Time Phases of Epidemic Infectious Diseases Spread

We propose the identification of three general three phases (time periods) for the emergency response of Epidemic Infectious Diseases Spread paired with medical response actions as elaborated below:

1) The First Phase: The initial starting stage corresponds to the initial occurrence and prepare for possible emergence plan of a new virus which may or may not transform into a new epidemic.

2) The Second Phase: For our consideration, this is the most important phase which is the so-called “First Half-Time Phase” otherwise known as the “Turning Phase” (or “Turning Period”) which starts with the beginning of a possible outbreak and includes the delayed epidemic peak by implementation of emergency planning to control the disease spread. The First Half Time phase involves Delta and Gamma indicators (elaborated more in Part B below) to measure the daily change in number of new patients (i.e., the indicator “Delta”), and the rate of the daily change in number of new patients (i.e., the indicator “Gamma”). As shown in Figure 1 above, the time interval from T0 to T1 is our Turning Phase (Turning Period), and also makes the end of the “First Half Time Phase” for an epidemic infectious disease spread.

3) The Third Phase: During this stage, the epidemic infectious disease spread enters the so-called “Second Half -Time Phase”, which means the epidemic peak is gone and the rate of spread is under greater control. This is measured in a continuously decreasing rate of new infections per day, and ultimately leads to any but not exclusively of the following scenarios: a): the disease completely disappears; b): an effective vaccine/treatment is introduced; and c): the strain could also disappear and reappear cyclically in seasons, or other reasons.

Of the three phases, the most important time period to identify is the beginning and the ending time points of the First-Half Phase (known as the “Turning Period”). This phase is crucial to controlling the outbreak and spread of an epidemic infectious disease after the first case of occurrence.

Thus, being able to identify the “First Half-Phase” is crucial for the reliable prediction of the “Turning Period” (or “Turning Phase”) as the ending time point of the Turing Period will allow us to predict when the outbreak of the infectious disease is under the control by the level we may settle (incorporating with ability and capability in the practice).
The next challenge to address is how to identify or predict this Turning Period.

To determine the Turning Period, we look to the occurrence of the so-called “Supersaturation Phenomenon” (elaborated below) based on our iSEIR model\(^\text{28-31, 34}\) by running the simulation for the four control variables S(t), E(t), I(t) and R(t) in the iSEIR model.\(^\text{28}\) These variables are functions of time “t” under the probability framework of individuals involved in the epidemic disease’s spread. Our prediction can be achieved once we observe the so-called “supersaturation phenomenon”, the moment where the future value range of \(T_1\) observes both \(E(t)\) and \(I(t)\) decrease. We determine this by simulating an iSEIR model that incorporates data from the initial daily disease spread (further explained by Part B below) (see also Figure 3 for both \(E(t)\) and \(I(t)\) going down).

![Figure 2](image.png)

Figure 2. Time difference in epidemic peak with and without intervention.

Part B: The Prediction of the Turning Period by using iSEIR Model Associated with Delta and Gamma Risk Indicators

When COVID-19 first emerged, we suggested using Delta and Gamma indicators to measure the daily change of new patients and the change rate of the daily change for new patients. These variables allowed us to identify the beginning point of the time interval for the Turning Period within China. For example, to identify the starting point \(T_0\) of the Turning Period, the level we considered for Delta was settled as no greater than 20% daily; and Gamma as no larger than 1% daily.

Next, to predict the future ending time point \(T_1\) of the Turning Period, which measures when the epidemic disease spread is under our control, we run numerical simulations of our iSEIR model as shown by Figure 3. \(T_1\) is determined to be the point at which both control variables \(E(t)\) and \(I(t)\) drop.

The combination of Part A and Part B allowed us to reliably predict the Turning Period of COVID-19 since its first case in Wuhan (China) in late December 2019. Using only the available data released by the National Health Commission of China from Feb. 10, 2020, we correctly assessed that “COVID-19 peak around mid- to later February, and entering in the Second Half Period around 20 February 2020.”\(^\text{31, 34}\)
To further understand our predictive simulation, we briefly describe the new idea of our iSEIR model and the related “Supersaturation Phenomenon”.

3.2 Our iSEIR Model as a new tool to model for “Supersaturation Phenomenon”

Almost all key models such as SEIR and related mathematical tools that exist to model the mechanics of epidemic disease spread are established under deterministic frameworks which assume that all individual behaviors and patterns are uniform (i.e., all behaviors of individuals are homogeneous), but this is not true as each individual’s behavior of infecting or being infected is different. In order to have a better way of describing the dynamics of “Spreading behavior” in multiplex network at an individual level to community to population levels, we introduced the so-called iSEIR model (individual Susceptible-Exposed-Infective-Removed) which operates under a probability perspective for each individual around two years ago as an extension of the classic SEIR one. This iSEIR model allows us to conduct simulations from the individual level located on the nodes of different community networks by incorporating its uncertainty with the probability to conduct random scenarios study with consideration of the corresponding multiplex networks. The behavior distribution of S, E, I and R can also be numerically simulated from the iSEIR model with properly specified values on population scales (in the change of percentage), population density, and transfer rate and so to have the simulation results given by Figure 3 above.

Thus, the simulation results based on the iSEIR model suggest that the intensity and extensiveness of the spread of the disease can be lowered by external intervention under a so-called “supersaturation phenomenon.” This phenomenon occurs when at some point in the future (denoted by \(T_1 \)) when both of the variables “\(E(t) \)” and “\(I(t) \)” drop in value and do not increase anymore as shown around the x-axis value of 1500 units in Figure 3.

At this value, both variables “\(E(t) \)” and “\(I(t) \)” are at the “supersaturation phenomenon.” Thus, the “supersaturation phenomenon” in the iSEIR model allows us to predict the turning period for the outbreak of epidemic diseases spread in the application.

We also like to share with readers that the general study on the prediction of the “peak period” for the outbreak of COVID-19 in China for early February 2020 has been given by Yuan et al.\(^ {38} \) and Tan\(^ {35} \).
4. Final Concluding Remarks based on our COVID-19 Predictions in China

We believe that our iSEIR model is a reliable predictor for the Turning Period of the struggle against COVID-19 through introducing concepts of “Turning Phase” and “Supersaturation Phenomenon”. This model accounts for intervention policies and methods such as isolation control programs (e.g. quarantine); such as those implemented in February 2020 in China. Beyond using our iSEIR model for the COVID-19 in China from late December to early March 2020, we hope to further apply it to outbreaks worldwide.

When we incorporate the public official data released by the Chinese government since 23 January 2020, our iSEIR simulation allowed us to conclude that:

- 1 February 2020, is the starting point for the formation of the turning point of the COVID-19 epidemic situation in China. Considering the intervention efforts implemented at the state-level, the time period for the control of the COVID-19 epidemic should be around mid-February 2020, and at least by the end of February 2020.

Before arriving at our final remarks, we want to consider the following with regards to the current global state of the COVID-19 outbreak:

1) The virus can be spread by infected and asymptomatic individuals;
2) At current, there is no fully effective medicine or treatment; and
3) No vaccine.

With these conditions, it is important that our iSEIR model be used to aid in modeling the timeline of the COVID-19 outbreak in other countries in shaping public policy. However, we acknowledge that our model is patterned to reflect effective intervention methods and protocols such as the “Wuhan Quarantine”. In conclusion, the simulated timeline provided by our iSEIR model best fits outbreak scenarios where early adoption of public health controls and restrictions are implemented to flatten the curve.

Finally, we want to reinforce that emergency risk management is always associated with the implementation of an emergency plan. The identification of the Turning Time Period is key to emergency planning as it provides a timeline for effective actions and solutions to combat a pandemic by reducing as much unexpected risk as soon as possible.

We can further improve our ability to emergency-plan in urgent events, such as in the control of an infectious disease outbreak like COVID-19 in three key areas:

1) a better spatiotemporal model to describe the mechanics of the spread of infectious diseases;
2) an efficient way to conduct numerical simulation to identify the “Turning Time Period (Phase)” for the emergency event, e.g., the timeframe for the outbreak of infectious diseases spread such as COVID-19 virus; and
3) carrying out effective predictive analysis by establishing a coherent bigdata method for data fusion from different sources with different structures to support a dynamic management to respond to daily issues with effective emergency planning.
References

George Yuan. "A brief explanation for the concept called 'Turning Period' for COVID-19 in China" (see link: https://mp.weixin.qq.com/s/7OfL3g6z_Bb-RRy17-GIYg), February 7, 2020.

George Yuan. "The fight against the new coronavirus entered the second half" (https://mp.weixin.qq.com/s/aAzKcRfZ5ST-dppDHFUZ0g), February 16, 2020.

Sharon Begley. "Once widely criticized, the Wuhan quarantine bought the world time to prepare for COVID-19." Reporting from the frontiers of health and medicine, STATS (https://www.statnews.com/), February 21, 2020 (see the link: https://www.statnews.com/2020/02/21/coronavirus-wuhan-quarantine-bought-world-time-to-prepare/).

About the Corresponding Author Dr. Yuan and his Team:
Dr. Yuan is a distinguished professor from Center for Financial Engineering (with focus on FinTech and Financial Engineering), Soochow University (Suzhou, China), Chair Professor in Sun Yat-sen University (Guangzhou, China), and holding a few visiting professorship position in a few other universities, in addition to being a Thousand Talents Plan expert of Shanghai and Sichuan, China. He is a senior advisor for Systems Engineering Society of China, and also serves as the deputy director on the Committee for Financial Mathematics, Engineering, and Actuarial Insurance of the China Society for Industrial and Applied Mathematics (CSIAM). He is also the Editor-in-Chief for the International Journal of Financial Engineering published by World Scientific.

Prof. Yuan’s team comprised Professor Di Lan from School of Artificial Intelligence and Computer Science in Jiangnan University, Engineer Gu Yudi from Information Construction and Management Center in Jiangnan University, Professor Qian Guoqi from Department of Mathematics and Statistics in University of Melbourne, in addition to Professor Qian Xiaosong and Professor Yue Xingye from Center for Financial Engineering in Soochow University, and a number of graduate students majoring in financial engineering and big data analysis with focus on FinTech and artificial intelligence.