HOME ABOUT CONTACT AVAILABLE ISSUES SUBSCRIBE MEDIA & ADS
LATEST UPDATES » Vol 23, No 10, October 2019 – Disruptive Urban Farming — Microbes, Plasmids, and Recycling       » Chinese scientist find new possibilities in dengue virus control       » 50 young scientists awarded with the inaugural XPLORER PRIZE       » Entering the China market to provide regional support       » Science, Tech, and policies convene for a sustainable future      
NEWS CRUNCH
Carnegie Mellon researchers hack off-the-shelf 3-D printer towards rebuilding the heart
Coronary artery structure being 3-D bioprinted. Credit: The College of Engineering at Carnegie Mellon University

Models of hearts, arteries, bones and brains are 3-D printed out of biological materials

PITTSBURGH — As of this month, over 4,000 Americans are on the waiting list to receive a heart transplant. With failing hearts, these patients have no other options; heart tissue, unlike other parts of the body, is unable to heal itself once it is damaged. Fortunately, recent work by a group at Carnegie Mellon could one day lead to a world in which transplants are no longer necessary to repair damaged organs.

"We've been able to take MRI images of coronary arteries and 3-D images of embryonic hearts and 3-D bioprint them with unprecedented resolution and quality out of very soft materials like collagens, alginates and fibrins," said Adam Feinberg, an associate professor of Materials Science and Engineering and Biomedical Engineering at Carnegie Mellon University. Feinberg leads the Regenerative Biomaterials and Therapeutics Group, and the group's study was published in the October 23 issue of the journal Science Advances. A demonstration of the technology can be viewed online.

"As excellently demonstrated by Professor Feinberg's work in bioprinting, our CMU researchers continue to develop novel solutions like this for problems that can have a transformational effect on society," said Jim Garrett, Dean of Carnegie Mellon's College of Engineering. "We should expect to see 3-D bioprinting continue to grow as an important tool for a large number of medical applications."

Traditional 3-D printers build hard objects typically made of plastic or metal, and they work by depositing material onto a surface layer-by-layer to create the 3-D object. Printing each layer requires sturdy support from the layers below, so printing with soft materials like gels has been limited.

"3-D printing of various materials has been a common trend in tissue engineering in the last decade, but until now, no one had developed a method for assembling common tissue engineering gels like collagen or fibrin," said TJ Hinton, a graduate student in biomedical engineering at Carnegie Mellon and lead author of the study.

"The challenge with soft materials — think about something like Jello that we eat — is that they collapse under their own weight when 3-D printed in air," explained Feinberg. "So we developed a method of printing these soft materials inside a support bath material. Essentially, we print one gel inside of another gel, which allows us to accurately position the soft material as it's being printed, layer-by-layer."

One of the major advances of this technique, termed FRESH, or "Freeform Reversible Embedding of Suspended Hydrogels," is that the support gel can be easily melted away and removed by heating to body temperature, which does not damage the delicate biological molecules or living cells that were bioprinted. As a next step, the group is working towards incorporating real heart cells into these 3-D printed tissue structures, providing a scaffold to help form contractile muscle.

Bioprinting is a growing field, but to date, most 3-D bioprinters have cost over $100,000 and/or require specialized expertise to operate, limiting wider-spread adoption. Feinberg's group, however, has been able to implement their technique on a range of consumer-level 3-D printers, which cost less than $1,000 by utilizing open-source hardware and software.

"Not only is the cost low, but by using open-source software, we have access to fine-tune the print parameters, optimize what we're doing and maximize the quality of what we're printing," Feinberg said. "It has really enabled us to accelerate development of new materials and innovate in this space. And we are also contributing back by releasing our 3-D printer designs under an open-source license."

Source: The College of Engineering at Carnegie Mellon University
NEWS CRUNCH  
news The Proteona Oncology Challenge using ESCAPETM Single Cell Proteogenomic Analysis
news New computational fluid dynamics solution for modeling aerosol mixtures in biomedical and environmental research
news Medial Fair Thailand opened on 11th September 2019 with a focus on future-proofing Thailand's healthcare industry to meet the challenges and opportunities of the next decade
news Biofuel Producers and Users to Convene in Singapore for Global Biofuels Summit
PR NEWSWIRE  
Asia Pacific Biotech News
SPOTLIGHT  
LIFE OF A SCIENTIST  

APBN Editorial Calendar 2019
January:
Taiwan Medical tourism
February:
Marijuana as medicine — Legal marijuana will open up scientific research
March:
Driven by curiosity
April:
Career developments for researchers
May:
What's cracking — Antibodies in ostrich eggs
June:
Clinical trials — What's in a name?
July:
Traditional Chinese medicine in modern healthcare — Integrating both worlds
August:
Digitalization vs Digitization — Exploring Emerging Trends in Healthcare
September:
Healthy Ageing — How Science is chipping in
October:
Disruptive Urban Farming — Microbes, Plasmids, and Recycling
Editorial calendar is subjected to changes.
MAGAZINE TAGS
About Us
Events
Available issues
Editorial Board
Letters to Editor
Instructions to Authors
Advertise with Us
CONTACT
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
Tel: 65-6466-5775
Fax: 65-6467-7667
» For Editorial Enquiries:
   biotech_edit@wspc.com or Ms Deborah Seah
» For Subscriptions, Advertisements &
   Media Partnerships Enquiries:
   biotech_ad@wspc.com
Copyright© 2019 World Scientific Publishing Co Pte Ltd  •  Privacy Policy